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Abstract. We analyze the reducibilities induced by, respectively, uniformly

continuous, Lipschitz, and nonexpansive functions on arbitrary ultrametric
Polish spaces, and determine whether under suitable set-theoretical assump-

tions the induced degree-structures are well-behaved.

1. Introduction

Throughout the paper, we work in the usual Zermelo-Frænkel set theory ZF, plus
the Axiom of Dependent Choices over the reals DC(R). Let X be a Polish space,
and let F be a reducibility (on X), that is a collection of functions from X to itself
closed under composition and containing the identity id = idX . Given A,B ⊆ X,
we say that A is reducible to B if and only if

A = f−1(B) for some f : X → X,

and that A is F-reducible to B (A ≤F B in symbols) if A is reducible to B via a
function in F . Notice that clearly A ≤F B ⇐⇒ ¬A ≤F ¬B (where, to simplify
the notation, we set ¬A = X \ A whenever the underlying space X is clear from
the context). Since F is a reducibility on X, the relation ≤F is a preorder which
can be used to measure the “complexity” of subsets of X: in fact, if F consists
of reasonably simple functions, the assertion “A ≤F B” may be understood as
“the set A is not more complicated than the set B” — to test whether a given
x ∈ X belongs to A or not, it is enough to pick a witness f ∈ F of A ≤F B,
and then check whether f(x) ∈ B or not. This suggests that the reducibility F
may be used to form a hierarchy of subsets of X in the following way. Say that
A,B ⊆ X are F-equivalent (A ≡F B in symbols) if A ≤F B ≤F A. Since ≡F is
the equivalence relation canonically induced by ≤F , we can consider the F-degree
[A]F = {B ⊆ X | A ≡F B} of a given A ⊆ X, and then order the collection
Deg(F) = {[A]F | A ⊆ X} of such F-degrees using the quotient of ≤F , namely
setting [A]F ≤ [B]F ⇐⇒ A ≤F B for every A,B ⊆ X. The resulting structure
Deg(F) = (Deg(F),≤) is then called F-hierarchy on X. When considering the
restriction DegΓ(F) of such structure to the F-degrees of sets in a given Γ ⊆P(X),
we speak of F-hierarchy on Γ-subsets of X.
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In his Ph.D. thesis [Wad83], Wadge considered the case when X is the Baire
space ωω (i.e. the space of all ω-sequences of natural numbers endowed with the
product of the discrete topology on ω) and F is either the set W = W(X) of all
continuous functions, or the set L(d̄) of all functions which are nonexpansive with
respect to the usual metric d̄ on ωω (see Section 2 for the definition). Using game-
theoretical methods, he was able to show that in both cases the F-hierarchy on
Borel subsets of X = ωω is semi-well-ordered, that is:
(1) it is semi-linearly ordered, i.e. either A ≤F B or ¬B ≤F A for all Borel A,B ⊆

X;
(2) it is well-founded.

Notice that the Semi-Linear Ordering principle for F (briefly: SLOF ) defined
in (1) implies that antichains have size at most 2, and that they are of the form
{[A]F , [¬A]F} for some A ⊆ X such that A �F ¬A (sets with this last property are
called F-nonselfdual, while the other ones are called F-selfdual : since F-selfduality
is ≡F -invariant, a similar terminology will be applied to the F-degree of A as well).
This in particular means that if we further identify each F-degree [A]F with its
dual [¬A]F we get a linear ordering, which is also well-founded when (2) holds.

A semi-well-ordered hierarchy is practically optimal as a measure of complex-
ity for (Borel subsets of) X: by well-foundness, we can associate to each A ⊆ X
an ordinal rank (the F-rank of A), and antichains are of minimal size.1 In fact,
in [MRSS12, MR12] it is proposed to classify arbitrary F-hierarchies on corre-
sponding topological spaces X according to whether they provide a good measure
of complexity for subsets of X. This led to the following definition.

Definition 1.1. Let F be a reducibility on a (topological) space X, and let Γ ⊆
P(X). The F-hierarchy DegΓ(F) on Γ-subsets of X is called:
• very good if it is semi-well-ordered;
• good if it is a well-quasi-order, i.e. all its antichains and descending chains are

finite;
• bad if it contains infinite antichains;
• very bad if it contains both infinite antichains and infinite descending chains.

Since the pioneering work of Wadge, many other F-hierarchies on the Baire
space ωω (or, more generally, on zero-dimensional Polish space) have been consid-
ered in the literature [VW78, AM03, And06, MR09a, MR10a, MR10b], including
Borel functions, ∆0

α-functions,2 Lipschitz functions, uniformly continuous func-
tions, functions of Baire class < α for a given additively closed countable ordi-
nal α, Σ1

n-measurable functions, and so on. It turned out that all of them are
very good when restricted to Borel sets, or even to larger collections of subsets
of ωω if suitable determinacy principles are assumed. In contrast, it is shown

1Asking for no antichain at all seems unreasonable by the following considerations: let A be

e.g. a proper open subset of a given Polish space X. On the one hand, checking membership

in A cannot be considered strictly simpler or strictly more difficult than checking membership
in its complement: this means that the degrees of A and ¬A cannot be one strictly below the
other in the hierarchy. On the other hand, the fact that open sets and closed sets have in general

different (often complementary) combinatorial and topological properties, strongly suggests that
the degrees of A and ¬A should be kept distinct. Therefore such degrees must form an antichain

of size 2.
2Given a countable ordinal α ≥ 1 and a Polish space X, a function f : X → X is called

∆0
α-function if f−1(A) ∈ Σ0

α for every A ∈ Σ0
α.
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in [Her93, Her96, IST12, Sch12, MRSS12] that when considering the continuous
reducibility on the real line R or, more generally, on arbitrary Polish spaces with
nonzero dimension, then one usually gets a (very) bad hierarchy (and the same
applies to some other classical kind of reducibilities, depending on the space under
consideration).3

Given all these results, one may be tempted to conjecture that all “natural”
F-hierarchies on (Borel subsets of) a zero-dimensional Polish space X need to
be very good. This conjecture is justified by the fact that every such space is
homeomorphic to a closed subset (hence to a topological retract) of the Baire space,
and a well-known transfer argument (see e.g. [MRSS12, Proposition 5.4]) shows that
this already implies the following folklore result.

Proposition 1.2. Let X be a zero-dimensional Polish space, and let F be an
arbitrary reducibility on X which contains W(X), i.e. all continuous functions from
X to itself. Then the F-hierarchy Deg∆1

1
(F) on Borel subsets of X is very good.

In fact, [MR09a, Theorem 3.1] (essentially) shows that this result can be further
strengthened when X itself is a closed subset of ωω: if X is equipped with the
restriction d̄X of the canonical metric d̄ on ωω, then Deg∆1

1
(F) is very good as soon

as F contains the collection L(d̄X) of all d̄X-nonexpansive functions.
Despite the above mentioned results, in [MR12, Theorem 5.4, Proposition 5.10,

and Theorem 5.11] it is shown that there are various natural reducibilities on ωω
that actually induce (very) bad hierarchies on its Borel subsets. In particular, it
is shown that ωω can be equipped with a complete ultrametric d′, still compatible
with its usual product topology, such that the F-hierarchy on Borel (in fact, even
just clopen) subsets of ωω is very bad for F the collection of all the d′-nonexpansive
(alternatively: d′-Lipschitz) functions.

Motivated by these results, in the present paper we continue this investigation
by considering various complete ultrametrics on ωω (compatible with its product
topology) and, more generally, the collection of all ultrametric Polish spaces X =
(X, d), a very natural and interesting class which includes e.g. the space Qp of
p-adic numbers (for every prime p ∈ N).4 On such spaces, we then consider the
hierarchies of degrees induced by one of the following reducibilities5 on X:

• the collection L(d) of all nonexpansive functions, where f : X → X is called
nonexpansive if d(f(x), f(y)) ≤ d(x, y) for all x, y ∈ X;

• the collection Lip(d) of all Lipschitz functions (with arbitrary constants), where
f : X → X is a Lipschitz function with constant L (for a nonnegative real L) if
d(f(x), f(y)) ≤ L · d(x, y) for all x, y ∈ X;

3Of course, one can further extend the class of topological spaces under consideration, and

analyze e.g. the continuous reducibility on them: for example, [Sel05] considers the case of ω-
algebraic domains (a class of spaces relevant in theoretical computer science), while [MRSS12]

consider the broader class of the so-called quasi-Polish spaces. Moreover, it is possible to generalize
the notion of reducibility itself by considering e.g. reducibilities between finite partitions (see
e.g. [vEMS87, Her93, Sel05, Sel07, Sel10] and the references contained therein).

4More generally, the completion of any countable valued field K with valuation | · |K : K → R
and metric d(x, y) = |x− y|K (for x, y ∈ K) is always an ultrametric Polish space.

5Notice that since the metric topology on X is always zero-dimensional, it does not make much
sense to consider reducibilities F ⊇W(X), because by Proposition 1.2 they always induce a very
good hierarchy on Borel subsets of X.
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• the collection UCont(d) of all uniformly continuous functions, where f : X → X
is uniformly continuous if for every ε ∈ R+ there is a δ ∈ R+ such that d(x, y) <
δ ⇒ d(f(x), f(y)) < ε for all x, y ∈ X (here R+ denotes the set of strictly positive
reals).
The main results of the paper are the following:

(A) The UCont(d)-hierarchy on Borel subsets of X is always very good (Theo-
rem 3.10). Since by Proposition 3.4 it is possible to equip the Baire space with
a compatible complete ultrametric d′ such that L(d̄) 6⊆ UCont(d′) (where d̄ is
the usual metric on ωω), this also implies that L(d̄) ⊆ F is a sufficient but
not necessary condition for the F-hierarchy on Borel subsets of ωω being very
good (for F a reducibility on ωω).

(B) If X is perfect, then the Lip(d)-hierarchy on the Borel subsets of X is either
very good (if X has bounded diameter), or else it is very bad already when
restricted to clopen subsets of X (if the diameter of X is unbounded). A
technical strengthening of the property of having (un)bounded diameter (see
Definition 3.11) works similarly for arbitrary ultrametric Polish spaces (Theo-
rems 3.14 and 3.17, Corollary 3.19).

(C) If the range of d contains an honest increasing sequence (see Definition 4.1),
then the L(d)-hierarchy on clopen subsets of X is very bad (Theorem 4.2);
in particular, this happens in the special case when X is perfect and has
unbounded diameter. If instead the range of d is either finite or a decreasing
ω-sequence converging to 0, then the L(d)-hierarchy on Borel subsets of X is
always very good (Theorem 4.7).

(D) It follows from the second part of (C) that if X is compact, then both6 the
Lip(d)- and the L(d)-hierarchy on Borel subsets of X are very good (Theo-
rem 5.2).

(E) If we assume the Axiom of Choice AC, then the F-hierarchy on (arbitrary
subsets of) an uncountable X is very bad for every reducibility F such that
L(d) ⊆ F ⊆ Bor(X), where Bor(X) is the collection of all Borel functions
from X into itself (Theorem 6.3). If we further assume that V = L, then the
F-hierarchy on X is very bad already when restricted to Π1

1, i.e. coanalytic,7

subsets of X (Theorem 6.11).
In particular, the results in (A)–(D) generalize those from [MR12, Section 5]

and answer most of the questions in [MR12, Section 6]. Moreover, they allow us
to construct discrete ultrametric Polish spaces X = (X, d) whose Lip(d)- and L(d)-
hierarchies are very bad (Corollaries 3.16 and 4.3), a fact which contradicts the
conceivable conjecture that the Lip(d)- and the L(d)-hierarchy on them need to be
(very) good since all subsets of such spaces are extremely simple (i.e. clopen). Notice
also that the result mentioned in (E) under the assumption V = L (which is best
possible for most reducibilities F by Proposition 1.2 and the comment following
it) can be viewed as an extension of the well-know classical result that if Π1

1-
determinacy fails then there are proper Π1

1 sets which are not (Borel-)complete for
coanalytic sets.

We end this introduction with two general remarks concerning the results pre-
sented in this paper:

6Since on compact metric spaces continuity and uniform continuity coincide, the UCont(d)-

hierarchy on Borel subsets of a compact X is very good already by Proposition 1.2.
7Equivalently, to Σ1

1 (i.e. analytic) subsets of X.
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i) to simplify the presentation, we will consider only F-hierarchies on Borel sub-
sets of a given ultrametric Polish space X (except in Section 6): this is be-
cause in this way we can avoid to assume any axiom beyond our basic theory
ZF+DC(R). However, as usual in Wadge theory, all our results can be extended
to larger pointclasses Γ ⊆P(X) by assuming corresponding determinacy ax-
ioms (more precisely: the determinacy of subsets of ωω which are Boolean
combinations of sets in Γ). In particular, under the full Axiom of Determinacy
AD (asserting that all games on ω are determined), all these results remain
true when considering unrestricted F-hierarchies Deg(F) on X;

ii) when showing that a given F-hierarchy on X (possibly restricted to some
Γ ⊆ P(X)) is very bad, we will actually show that some very complicated
partial (quasi-)order on P(ω), like the inclusion relation ⊆, or even the more
complicated relation ⊆∗ of inclusion modulo finite sets, embeds into such a
hierarchy. This gives much stronger results, as it implies e.g. that the F-
hierarchy under consideration contains antichains of size the continuum and,
in the case of ⊆∗, that (under AC) every partial order of size ℵ1 embeds into
the F-hierarchy on (Γ-subsets of) X (see [Par63]).

2. Basic facts about ultrametric Polish spaces

Given a metric space X = (X, d), we denote by τd the metric topology (induced
by d), i.e. the topology generated by the basic open balls Bd(x, ε) = {y ∈ X |
d(x, y) < ε} (for some x ∈ X and ε ∈ R+). When considered as a topological
space, the space X is tacitly endowed with such topology, and therefore we will e.g.
say that the metric space X is separable if there is a countable τd-dense subset of
X, and similarly for all other topological notions. The diameter of X is bounded if
there is R ∈ R+ such that sup{d(x, y) | x, y ∈ X} ≤ R, and unbounded otherwise.

A metric d on a space X is called ultrametric if it satisfies the following strength-
ening of the triangle inequality, for all x, y, z ∈ X:

d(x, z) ≤ max{d(x, y), d(y, z)}.

Definition 2.1. An ultrametric Polish space is a separable metric space X = (X, d)
such that d is a complete ultrametric. The collection of all ultrametric Polish spaces
will be denoted by X .

Every (τd-)closed subspace C of an ultrametric Polish space X = (X, d) will
be tacitly equipped with the metric dC = d � C, which is obviously a complete
ultrametric compatible with the relative topology on C induced by τd. When there
is no danger of confusion, with a little abuse of notation the metric dC will be
sometimes denoted by d again.

Notation 2.2. Given an ultrametric Polish space X = (X, d), we set R(d) =
{d(x, y) | x, y ∈ X,x 6= y}, the set of all nonzero distances realized in X.

A typical example of an ultrametric Polish space is obtained by equipping the
Baire space with the usual metric d̄ defined by

d̄(x, y) =

{
0 if x = y

2−n if n is smallest such that x(n) 6= y(n) :
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it is straightforward to check that d̄ is actually an ultrametric generating the prod-
uct topology on ωω, and obviously R(d̄) = {2−n | n ∈ ω}. We will keep denoting
this ultrametric by d̄ throughout the paper.

We collect here some easy but useful facts about arbitrary ultrametric (Polish)
spaces X = (X, d):
(1) for every x, y, z ∈ X two of the distances d(x, y), d(x, z), d(y, z) are equal, and

they are greater than or equal to the third (the “isosceles triangle” rule);
(2) for every x, y, z ∈ X, if d(x, z) 6= d(y, z) then d(x, y) = max{d(x, z), d(y, z)}.

In particular, if x, y, z, w ∈ X are such that d(x, z), d(y, w) < d(x, y) then
d(z, w) = d(x, y);

(3) given a (τd-)dense set Q ⊆ X, all distances are realized by elements of Q,
that is: for every x, y ∈ X there are q, p ∈ Q such that d(x, y) = d(q, p). In
particular, if X is separable then R(d) is countable;8

(4) for every x ∈ X and r ∈ R+ the open ball Bd(x, r) is actually clopen, and
Bd(y, r) = Bd(x, r) for every y ∈ Bd(x, r). In particular, the topology τd is
always zero-dimensional, and hence if X is an ultrametric Polish space, then it
is homeomorphic to a closed subset of the Baire space by [Kec95, Theorem 7.8]
(see also Lemma 3.5);

(5) given x, y ∈ X and r, s ∈ R+, the (cl)open balls Bd(x, r) and Bd(y, s) are either
disjoint, or else one of them contains the other.

To simplify the terminology, we adapt the definition of family of reducibilities
introduced in [MRSS12, Definition 5.1] to the restricted context of ultrametric
Polish spaces.

Definition 2.3. Let F be a collection of functions between ultrametric Polish
spaces. For X,Y ∈ X , denote by F(X,Y ) the collection of all functions from
F with domain X and range included in Y . The collection F is called family of
reducibilities (on X ) if:

(1) it contains all the identity functions, i.e. idX ∈ F(X,X) for every X ∈X ;
(2) it is closed under composition, i.e. for every X,Y, Z ∈ X , f ∈ F(X,Y ),

and g ∈ F(Y,Z), the function g ◦ f belongs to F(X,Z);

Examples of family of reducibilities are the collections of all continuous func-
tions, of all uniformly continuous functions, of all Lipschitz functions, and of all
nonexpansive functions. Notice also that if F is a family of reducibilities then
F(X) = F(X,X) is a reducibility on the space X (for every X ∈ X ). The next
simple lemma is a minor variation of [MRSS12, Proposition 5.4] and can be proved
in a similar way.

Lemma 2.4. Let F be a family of reducibilities and X,Y ∈X . Suppose that there
is a surjective f ∈ F(X,Y ) admitting a right inverse g ∈ F(Y,X). Then there is
an embedding from (P(Y ),≤F(Y ),¬) into (P(X),≤F(X),¬).

In particular, if F consists of Borel functions and the F(X)-hierarchy on Borel
subsets of X is (very) good, then also the F(Y )-hierarchy on Borel subsets of Y is
(very) good.

Proof. The map P(Y )→P(X) : A 7→ f−1(A) is the desired embedding. �

8Vice versa, for every countable R ⊆ R+ there is an ultrametric Polish space X = (X, d) such
that R(d) = R, for example X = R ∪ {0} with d(x, y) = max{x, y} for distinct x, y ∈ X.
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3. Uniformly continuous and Lipschitz reducibilities

In [MR12, Question 6.2], it is asked whether one can equip the Baire space ωω
with a compatible complete ultrametric d′ so that L(d̄) 6⊆ UCont(d′), and whether
it is possible to strengthen this last condition to: the UCont(d′)-hierarchy on X is
(very) bad. We start by answering positively the first part of this question.

Notation 3.1. Given a function φ : ω → R+, we denote by rg(φ) the range of φ, i.e.
rg(φ) = {r ∈ R+ | ∃n ∈ ω (φ(n) = r)}.

Definition 3.2. Given a function φ : ω → R+ with inf rg(φ) > 0, define the metric
dφ on ωω by setting for every x, y ∈ ωω

dφ(x, y) = max{φ(x(0)), φ(y(0))} · d̄(x, y).

It is not hard to check that each dφ is a complete ultrametric compatible with
the product topology on ωω (and that inf rg(φ) > 0 is necessary for completeness).

Notation 3.3. Given a natural number i ∈ ω and an ordinal α, we denote by i(α)

the constant α-sequence with value i.

Proposition 3.4. Let φ : ω → R+ : n 7→ 2n. Then L(d̄) 6⊆ UCont(dφ).

Proof. Consider the map f : ωω → ωω : nax 7→ 3nax. We show that for every
ε, δ ∈ R+ there are x, y ∈ ωω such that dφ(x, y) < δ but dφ(f(x), f(y)) > ε. Let
0 6= k ∈ ω be such that 2−k < δ. Then for every n ≥ k we get that setting
x = n(2n)a0(ω) and y = n(2n)a1(ω),

dφ(x, y) = 2n · 2−2n = 2−n ≤ 2−k < δ.

However,
dφ(f(x), f(y)) = 23n · 2−2n = 2n,

hence letting n be large enough we get dφ(f(x), f(y)) > ε, as desired. �

In order to answer the second half of [MR12, Question 6.2], we abstractly analyze
the behavior of the UCont(d)-hierarchy on an arbitrary ultrametric Polish space
X = (X, d). The following lemma uses standard arguments (see e.g. the proof
of [Kec95, Theorem 7.8]), but we fully reprove it here for the reader’s convenience.

Lemma 3.5. Let X = (X, d) be an ultrametric Polish space. Then there is a closed
set C ⊆ ωω and a bijection f : (C, d̄)→ (X, d) such that f is uniformly continuous
and f−1 is nonexpansive. Moreover, if X has bounded diameter, then f is even
Lipschitz, and if X has diameter ≤ 1 then we can alternatively require f to be
nonexpansive and f−1 to be Lipschitz with constant 2.

Proof. Let Q be a countable dense subset of X. Define the sets As ⊆ X for
s ∈ <ωω recursively on lh(s) as follows: A∅ = X. Given As ⊆ X, let {Bs,i | i < I}
(for some I ≤ ω) be an enumeration without repetitions of the set of open balls
{Bd(x, 2− lh(s)) | x ∈ Q∩As}, and set Asai = Bs,i if i < I and Asai = ∅ otherwise.
Since d is an ultrametric, one can easily check that the family (As)s∈<ωω is a Luzin
scheme with vanishing diameter consisting of clopen sets, and with the further
property that As =

⋃
n∈ω Asan for every s ∈ <ωω. Therefore the set C = {x ∈ ωω |⋂

n∈ω Ax�n 6= ∅} is a closed subset of ωω, and the map f : C → X sending x ∈ C
to the unique element in

⋂
n∈ω Ax�n is a bijection. So it remains only to check that

such f has the desired properties.
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Given ε > 0, let n ∈ ω be smallest such that 2−n ≤ ε, and set δ = 2−n. If
x, y ∈ C are such that d̄(x, y) < δ, then x � (n + 1) = y � (n + 1), which implies
f(x), f(y) ∈ Ax�(n+1). By definition of the As, this implies that d(f(x), f(y)) <
2−n ≤ ε. This shows that f is uniformly continuous.

Further assuming that X be of bounded diameter, we get that f is Lipschitz
with constant max{2, k}, where k ∈ ω is an arbitrary bound to the diameter of X,
i.e. it is such that d(x, y) ≤ k for every x, y ∈ X. To see this, fix distinct x, y ∈ C.
If x(0) 6= y(0) then d(f(x), f(y)) ≤ k ≤ k · d̄(x, y) by our choice of k ∈ ω. Let now
n 6= 0 be smallest such that x(n) 6= y(n), so that d̄(x, y) = 2−n. Since x � n = y � n
we get that f(x), f(y) ∈ Ax�n, which implies d(f(x), f(y)) < 2−(n−1): therefore
d(f(x), f(y)) < 2 · 2−n = 2 · d(x, y).

Now fix x, y ∈ C, and let n ∈ ω be such that d̄(x, y) = 2−n. Since x(n) 6=
y(n) implies Ax�(n+1) ∩ Ay�(n+1) = ∅, we get that d(f(x), f(y)) ≥ 2−n (because
d is an ultrametric), and hence d̄(x, y) ≤ d(f(x), f(y)). This shows that f−1 is
nonexpansive.

Finally, assume that X has diameter ≤ 1. In the construction above, redefine the
collections {Bs,i | i < I} as enumerations without repetitions of {Bd(x, 2−(lh(s)+1)) |
x ∈ Q∩As}, and then use this new sets to define the As’s and the map f . Arguing
as before, one can easily check that f is now nonexpansive while f−1 is Lipschitz
with constant 2, as required. �

Remark 3.6. The special case of Lemma 3.5 where X has diameter ≤ 1 already
appeared (with the same proof) in [MR09b, Theorem 4.1]. However, such a result
cannot be literally extended to an arbitrary ultrametric Polish space X, and in
fact the assumptions in Lemma 3.5 are optimal. To see this, note that if X has
unbounded diameter then we cannot require a map f as in Lemma 3.5 to be Lips-
chitz because every Lipschitz image of a space with bounded diameter (like any set
C ⊆ ωω) has necessarily bounded diameter too. Similarly, a nonexpansive image
of a set of diameter ≤ R (for some R ∈ R+), has diameter ≤ R too.

Definition 3.7. Let X be a topological space, F be a collection of functions from
X to itself, and A ⊆ X. We call F-retraction of X onto A any surjection f ∈ F
from X onto A such that f � A = idA; if such a function exists we also say that A
is an F-retract of X.

Recall from [Kec95, Proposition 2.8] that if ∅ 6= A ⊆ C are closed subsets of the
Baire space, then there is an L(d̄C)-retraction (i.e. a nonexpansive retraction) of
C onto A — a fact that will be repeatedly used throughout the paper. The next
corollary generalizes this result to arbitrary ultrametric Polish spaces, provided that
we slightly weaken the requirement that the retraction be nonexpansive.

Corollary 3.8. Let X = (X, d) be an ultrametric Polish space. For every nonempty
closed A ⊆ X, there is a uniformly continuous retraction r : X � A. If moreover
A has bounded diameter, then the retraction r can be taken to be Lipschitz.

Proof. Let C and f be as in Lemma 3.5, with f uniformly continuous and f−1

nonexpansive. Notice that since f is, in particular, a homeomorphism, the set
A′ = f−1(A) is a nonempty closed subset of C. Let g : C → A′ be a nonexpansive
retraction: then r = f ◦g◦f−1 : (X, d) � (A, d) is the desired uniformly continuous
retraction.
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Assume now that A has bounded diameter, and let C, f , and g be as in the
previous paragraph. Arguing as in the proof of Lemma 3.5, one can easily check
that f � A′ : (A′, d̄)→ (X, d) is actually Lipschitz (since A has bounded diameter):
therefore r = (f � A′) ◦ g ◦ f−1 : (X, d) � (A, d) is the desired Lipschitz retraction.

�

Remark 3.9. It is not possible in general to strengthen Corollary 3.8 by requiring the
reduction to be nonexpansive, even if we require the entireX to have small diameter.
To see this, let X = {0} ∪

{
1
2 + 2−(n+1) | n ∈ ω

}
, and set d(x, y) = max{x, y} for

all distinct x, y ∈ X. Then X = (X, d) is a discrete ultrametric Polish space of
diameter ≤ 1. Consider the clopen set A = X \ {0}, and let f : X � A be a
retraction. Let n ∈ ω be such that f(0) = 1

2 + 2−(n+1): then setting x = 0 and
y = 1

2 + 2−(n+2) we get that

d(f(x), f(y)) = d(f(x), y) =
1
2

+ 2−(n+1) >
1
2

+ 2−(n+2) = d(x, y),

so f is expansive.

Theorem 3.10. The UCont(d)-hierarchy Deg∆1
1
(UCont(d)) on the Borel subsets

of an arbitrary ultrametric Polish space X = (X, d) is always very good. If X has
bounded diameter, then the Lip(d)-hierarchy Deg∆1

1
(Lip(d)) on the Borel subsets of

X is very good as well.

Proof. Let C ⊆ ωω and f : C → X be as in Lemma 3.5, and let g : (ωω, d̄)→ (C, d̄)
be a nonexpansive retraction. Then f−1 is a right inverse of g ◦ f , and hence the
result follows from Lemma 2.4 and the fact that both the UCont(d̄)-hierarchy and
the Lip(d̄)-hierarchy are very good by [MR10a]. �

In particular, this fully answers in the negative the second half of [MR12, Ques-
tion 6.2]. Moreover, Theorem 3.10 provides also a negative answer to [MR12,
Question 6.1]: letting φ be as in Proposition 3.4, we get that the set UCont(dφ)
of uniformly continuous functions is a surjective image of ωω,9 it does not contain
L(d̄), but it induces a very good hierarchy on the Borel subsets (or, further assuming
AD, on the collection of all subsets) of ωω.

Theorem 3.10 shows that having a bounded diameter is a sufficient condition
for having that the Lip(d)-hierarchy on the Borel subsets of an ultrametric Polish
space X = (X, d) is very good. In fact, we are now going to show that a technical
strengthening of this condition is both necessary and sufficient for that.

Definition 3.11. Let X = (X, d) be an (ultra)metric Polish space. We say that
the diameter of X is nontrivially unbounded if for every k ∈ ω and every ε ∈ R+

there are x, y ∈ X with d(x, y) > k such that both x and y are not ε-isolated.10

Notice that if X is perfect, then the diameter of X is nontrivially unbounded if
and only if it is unbounded.

9When working in models of AD (as it is often the case when dealing with Wadge-like hi-

erarchies), for technical reasons it is often preferable to express “cardinality inequality” using

surjections instead of injections. Therefore the stated property should be intended (in any model
of ZF) as: the cardinality of UCont(dφ) is not larger than that of the Baire space. Obviously,

further assuming the Axiom of Choice AC this just means that UCont(dφ) has cardinality ≤ 2ℵ0 .
10Recall that a point x of a metric space is called ε-isolated (for some ε ∈ R+) if Bd(x, ε) = {x}.
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Example 3.12. Let p be a prime natural number, and let Qp be the ultrametric Pol-
ish space of p-adic numbers equipped with the usual p-adic metric dp: then Qp has
unbounded diameter and is perfect (hence its diameter is nontrivially unbounded).
To see the former, given k ∈ ω let n ∈ ω be such that n ≥ 2 and k < pn: setting
x = p−1 and y = p−n we easily get dp(x, y) = pn > k. To see that Qp is also
perfect, fix an arbitrary q ∈ Q, and given ε ∈ R+ let l ∈ ω be such that p−l < ε:
then q′ = q− pl is distinct from q and dp(q, q′) = p−l < ε. This shows that q is not
isolated, and since Q is dense in Qp we are done.

Notation 3.13. We let ⊆∗ denote the relation of inclusion modulo finite sets between
subsets of ω, i.e. for every a, b ⊆ ω we set

a ⊆∗ b ⇐⇒ ∃k̄ ∈ ω ∀k ≥ k̄ (k ∈ a⇒ k ∈ b).

Theorem 3.14. Let X = (X, d) be an ultrametric Polish space, and assume that
its diameter is nontrivially unbounded. Then there is a map ψ from P(ω) into the
clopen subsets of X such that for all a, b ⊆ ω:

(1) if a ⊆∗ b then ψ(a) ≤L(d) ψ(b);
(2) if ψ(a) ≤Lip(d) ψ(b) then a ⊆∗ b.

In particular, (P(ω),⊆∗) embeds into both Deg∆0
1
(Lip(d)) and Deg∆0

1
(L(d)).

Proof. Let (qn)n∈ω be an enumeration of a countable dense subset Q of X. We
first recursively construct two sequences (rn)n∈ω, (sn)n∈ω of nonnegative reals and
two sequences (xn)n∈ω, (yn)n∈ω of points of X such that for all distinct n,m ∈ ω
the following properties hold:
(a) d(xn, xm) = rmax{n,m} and d(xn, yn) = sn;
(b) rn+1 > max{n + 1, r2

n} (in particular, (rn)n∈ω is strictly increasing and un-
bounded in R+);

(c) s0 < 1 and sn+1 < sn
rn+1 (in particular, (sn)n∈ω is a strictly decreasing se-

quence).

Claim 3.14.1. If x ∈ X is not ε-isolated then there are at least two distinct
qi, qj ∈ Q such that qi, qj ∈ Bd(x, ε).

Proof of the Claim. Since x is not ε-isolated, there is y ∈ Bd(x, ε) such that x 6=
y. By density of Q, there are qi, qj ∈ Q such that qi ∈ Bd(x, d(x, y)) and qj ∈
Bd(y, d(x, y)). Then qi 6= qj since Bd(x, d(x, y)) ∩ Bd(y, d(x, y)) = ∅, while qi, qj ∈
Bd(x, ε) because Bd(x, d(x, y)), Bd(y, d(x, y)) ⊆ Bd(x, ε) by d(x, y) < ε. �

Let x ∈ X be not 1-isolated (such an x exists because the diameter of X is
nontrivially unbounded), and let qi, qj be as in Claim 3.14.1 for ε = 1. Then
we set x0 = qi, y0 = qj , r0 = 0, and s0 = d(qi, qj). Now assume that xn, yn,
rn, and sn have been defined. Let x, y ∈ X be such that d(x, y) > max{n +
1, r2

n} and x, y are not sn
rn+1 -isolated. Then at least one of x and y has distance

greater than max{n+ 1, r2
n} from xn (and hence also from all the xm for m ≤ n):

if not, then we would have d(x, y) ≤ max{d(x, xn), d(y, xn)} ≤ max{n + 1, r2
n},

contradicting our choice of x, y. So we may assume without loss of generality
that d(x, xn) > max{n + 1, r2

n} and x is not sn
rn+1 -isolated. Let qi, qj be as in

Claim 3.14.1 for ε = sn
rn+1 , and set xn+1 = qi, yn+1 = qj , rn+1 = d(qi, xn),

and sn+1 = d(qi, qj). Since d(qi, x) < sn
rn+1 ≤ 1 ≤ max{n + 1, r2

n}, we have
rn+1 = d(qi, xn) = d(x, xn) > max{n + 1, r2

n}. Moreover, sn+1 <
sn
rn+1 by the fact



LIPSCHITZ AND UNIFORMLY CONTINUOUS REDUCIBILITIES 11

that qi, qj ∈ Bd(x, sn
rn+1 ). Arguing by induction on n ∈ ω, it is then easy to check

that the sequences constructed in this way have all the desired properties.
Given a ⊆ ω, let â = {2i | i ∈ ω} ∪ {2i + 1 | i ∈ a}, so that â is always infinite

and for every a, b ⊆ ω
a ⊆∗ b ⇐⇒ â ⊆∗ b̂.

For a ⊆ ω, set ψ(a) =
⋃
i∈âBd(xi, si). Clearly, each ψ(a) is an open subset of X.

To see that it is also closed, observe that Bd(xi, si) ⊆ Bd(xi, 1) for every i ∈ ω by
our choice of the si’s, and that for distinct i, j ∈ ω the clopen balls Bd(xi, 1) and
Bd(xj , 1) are disjoint by our choice of the xi’s and of the ri’s: therefore, since the
open balls in X are automatically closed we get that

X \ ψ(a) =
⋃{

Bd(z, 1) | z /∈
⋃

i∈â
Bd(xi, 1)

}
∪
⋃
{Bd(xi, 1) \Bd(xi, si) | i ∈ â}

is open.
Let now a, b ⊆ ω be such that a ⊆∗ b, which in particular implies â ⊆∗ b̂, and

let 0 6= k̄ ∈ ω be such that k̄ ∈ â and k ∈ â ⇒ k ∈ b̂ for every k ≥ k̄. Define
f : (X, d)→ (X, d) as follows:

f(x) =


xk̄ if x ∈ Bd(xi, si), i < k̄, i ∈ â
yk̄ if x ∈ Bd(x0, rk̄) \

⋃
{Bd(xi, si) | i < k̄, i ∈ â}

yi if x ∈ Bd(xi, si), i ≥ k̄, i /∈ â
x otherwise.

It is straightforward to check that f reduces ψ(a) to ψ(b), so we only need to check
that f is nonexpansive, and this amounts to check that if x, y are distinct points of
X which fall in different cases in the definition of f , then d(f(x), f(y)) ≤ d(x, y).
A careful inspection shows that the unique nontrivial cases are the following:
case A: x ∈ Bd(x0, rk̄), while y /∈ Bd(x0, rk̄) ∪

⋃
{Bd(xi, si) | i ≥ k̄, i /∈ â}. Then

d(x, y) ≥ rk̄ (by case assumption) and d(x, f(x)) = rk̄ (because either
f(x) = xk̄ or f(x) = yk̄, depending on whether x ∈ Bd(xi, si) for some i ∈ â
smaller than k̄ or not). Since in the case under consideration f(y) = y,
we get that either d(f(x), f(y)) ≤ rk̄, or else d(f(x), f(y)) = d(f(x), y) =
d(x, y) by the isosceles triangle rule: in both cases, d(f(x), f(y)) ≤ d(x, y)
as required.

case B: x ∈ Bd(x0, rk̄) \
⋃
{Bd(xi, si) | i < k̄, i ∈ â}, while y ∈ Bd(xi, si) for some

i ≥ k̄, i /∈ â. Then since d(x, x0) < rk̄ and d(x0, y) = ri ≥ rk̄, we get
d(x, y) = ri. Since by case assumption f(x) = yk̄ and f(y) = yi, either
f(x) = f(y) (in case i = k̄) or d(f(x), f(y)) = ri, and hence we again get
d(f(x), f(y)) ≤ d(x, y), as required.

case C: x ∈ Bd(xi, si) for some i ≥ k̄, i /∈ â, while y /∈ Bd(x0, rk̄) ∪
⋃
{Bd(xi, si) |

i ≥ k̄, i /∈ â}. Then d(x, y) ≥ si, d(x, f(x)) = si (because f(x) = yi), and
f(y) = y: this implies that either d(f(x), f(y)) ≤ si or d(f(x), f(y)) =
d(f(x), y) = d(x, y), so that in any case d(f(x), f(y)) ≤ d(x, y).

This concludes the proof of part (1).

We now prove part (2) of the theorem. Given a, b ⊆ ω, assume that f : (X, d)→
(X, d) is a Lip(d)-reduction of ψ(a) to ψ(b), and let 0 6= n ∈ ω be such that
d(f(x), f(y)) ≤ rn·d(x, y) for every x, y ∈ X (such an n exists because (rn)n∈ω is un-
bounded in R+ by (b) above). Notice that, necessarily, f (

⋃
{Bd(xi, si) | i ∈ â}) =
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f(ψ(a)) ⊆ ψ(b) ⊆
⋃
j∈ω Bd(xj , sj). We now argue as in the proof of [MR12, Theo-

rem 5.4].

Claim 3.14.2. Fix an arbitrary i ∈ â. If there are x ∈ Bd(xi, si) and j ≥ n such
that f(x) ∈ Bd(xj , sj), then f(Bd(xi, si)) ⊆ Bd(xj , sj).

Proof of the Claim. Suppose not, and let y ∈ Bd(xi, si) and j′ 6= j be such that
f(y) ∈ Bd(xj′ , sj′). Then

d(f(x), f(y)) = max{rj , rj′} ≥ rj ≥ rn · 1 > rn · si > rn · d(x, y),

contradicting the choice of n. �

Claim 3.14.3. For every i ∈ â such that i > n, f(Bd(xi, si)) ⊆ Bd(xj , sj) for
some j ≥ i.

Proof. Suppose towards a contradiction that there are x ∈ Bd(xi, si) and j < i

such that f(x) ∈ Bd(xj , sj), so that, in particular, j ∈ b̂ because x ∈ ψ(a) and f
reduces ψ(a) to ψ(b). Then since d(x, yi) = si, by our choice of the si’s we get

d(f(x), f(yi)) ≤ rn · si ≤ ri−1 · si < si−1 ≤ sj ,

and hence f(yi) ∈ Bd(f(x), sj) = Bd(xj , sj) ⊆ ψ(b): but this contradicts the fact
that f is a reduction of ψ(a) to ψ(b), because yi /∈ ψ(a) while Bd(xj , sj) ⊆ ψ(b)
since j ∈ b̂. Thus, given an arbitrary x ∈ Bd(xi, si) there is j ≥ i > n such that
f(x) ∈ Bd(xj , sj): by Claim 3.14.2, we then get f(Bd(xi, si)) ⊆ Bd(xj , sj), as
required. �

Let now ı̄ be the smallest element of â. By Claim 3.14.2, either f(Bd(xı̄, sı̄)) ⊆⋃
j<nBd(xj , sj), or f(Bd(xı̄sı̄)) ⊆ Bd(xj , sj) for some j ≥ n. Therefore, in both

cases there is k̄ > max{n, ı̄} such that f(Bd(xı̄, sı̄)) ⊆
⋃
j≤k̄ Bd(xj , sj): we claim

that k ∈ â⇒ k ∈ b̂ for every k ≥ k̄, which also implies a ⊆∗ b.
Fix k ≥ k̄ such that k ∈ â. By Claim 3.14.3 and k̄ > n, there is j ≥ k such that

f(Bd(xk, sk)) ⊆ Bd(xj , sj). Assume towards a contradiction that j > k: then

d(f(xı̄), f(xk)) = rj > rk · rk > rn · rk = rn · d(xı̄, xk),

contradicting the choice of n. Therefore f(Bd(xk, sk)) ⊆ Bd(xk, sk), which in
particular implies that ψ(b) ∩ Bd(xk, sk) 6= ∅ (since xk ∈ ψ(a) and f reduces ψ(a)
to ψ(b)): but this means that k ∈ b̂, and hence we are done. �

Applying Theorem 3.14 to the space Qp of p-adic numbers (which is possible by
Example 3.12) we get the following corollary.

Corollary 3.15. Let p be a prime natural number, and let dp be the p-adic metric
on the space Qp. Then both the Lip(dp)- and the L(dp)-hierarchies are very bad
already when restricted to clopen subsets of Qp.

The condition on the diameter of X = (X, d) used to prove Theorem 3.14 is very
weak: this allows us to construct extremely simple (in fact: discrete) ultrametric
Polish spaces X = (X, d) with the property that their Lip(d)- and L(d)-hierarchies
are both very bad, despite the fact that all their subsets are topologically simple
(i.e. clopen).
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Corollary 3.16. There exists a discrete (hence countable) ultrametric Polish space
X0 = (X0, d0) such that (P(ω),⊆∗) embeds into both the Lip(d0)- and the L(d0)-
hierarchy on (the clopen subsets of) X0. In particular, Deg(Lip(d0)) = Deg∆0

1
(Lip(d0))

and Deg(L(d0)) = Deg∆0
1
(L(d0)) are both very bad.

Proof. Let X0 = {xin | n ∈ ω, i = 0, 1} and set

d0(xin, x
j
m) =


0 if n = m and i = j

2−n if n = m and i 6= j

max{n,m} if n 6= m.

It is easy to check that X0 = (X0, d0) is a discrete ultrametric Polish space. Now
observe that the diameter of X0 is nontrivially unbounded. In fact, given n ∈ ω and
ε ∈ R+, let k be minimal such that 2−k < ε and l = max{n, k}: then d0(x0

l , x
0
l+1) =

l + 1 > n, and the points x1
l and x1

l+1 witness that x0
l and x0

l+1 are not ε-isolated.
Therefore X0 is as desired by Theorem 3.14. �

The next proposition extends Theorem 3.10 and shows that the condition on X
in Theorem 3.14 is optimal.

Theorem 3.17. Let X = (X, d) be an ultrametric Polish space whose diameter
is not nontrivially unbounded. Then the Lip(d)-hierarchy Deg∆1

1
(Lip(d)) on Borel

subsets of X is very good.

Proof. Let n ∈ ω and ε ∈ R+ be such that for every x, y, if d(x, y) > n then at
least one of x and y is ε-isolated.

Let us first consider the degenerate case in which all points of X are ε-isolated.
Since constant functions are always (trivially) Lipschitz, we get that the sets X
and ∅ are Lip(d)-incomparable, and that they are both (strictly) ≤Lip(d)-below any
other set ∅, X 6= A ⊆ X. Assume now that B ⊆ X is another set which is different
from both ∅ and X: we claim that then A ≡Lip(d) B. To see this, fix x̄ ∈ B and
ȳ ∈ ¬B, and for every x ∈ X set f(x) = x̄ if x ∈ A and f(x) = ȳ if x ∈ ¬A. Then
f : (X, d) → (X, d) reduces A to B. Moreover, since for all distinct x, y ∈ X we
have d(x, y) ≥ ε (because both x and y are ε-isolated), we get

d(f(x), f(y)) ≤ d(x̄, ȳ) =
d(x̄, ȳ)
ε
· ε ≤ d(x̄, ȳ)

ε
· d(x, y),

so that f is Lipschitz with constant d(x̄,ȳ)
ε . This shows that A ≤Lip(d) B. Switching

the role of A and B, we get that also B ≤Lip(d) A, and hence we are done. Therefore
we have shown that the Lip(d)-hierarchy on X is constituted by the two Lip(d)-
incomparable degrees [∅]Lip(d) = {∅} and [X]Lip(d) = {X}, plus a unique Lip(d)-
degree above them containing all other subsets of X, and is thus (trivially) very
good.

Assume now that there is a non-ε-isolated point x0 ∈ X, and set X ′ = Bd(x0, n+
1). By our choice of n and ε, we get that d(x, y) ≥ n + 1 for every x ∈ X ′ and
y ∈ X \X ′, and that each y ∈ X \X ′ is ε-isolated (because d(x0, y) > n and x0 is
not ε-isolated). We first prove the following useful claim.

Claim 3.17.1. Let A,B ⊆ X be such that B 6= ∅, X. If there is a Lipschitz
reduction f : (X ′, dX′)→ (X ′, dX′) of A′ = A∩X ′ to B′ = B∩X ′, then A ≤Lip(d) B.
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Proof. Let f be as in the hypothesis of the claim, and let 1 ≤ k ∈ ω be such that
d(f(x), f(y)) ≤ k · d(x, y) for every x, y ∈ X ′. Fix x̄ ∈ B and ȳ ∈ ¬B, and extend
f to the map f̂ : (X, d)→ (X, d) by letting f̂(x) = x̄ if x ∈ A \X ′ and f̂(x) = ȳ if
x ∈ X \ (X ′ ∪A). Clearly, f̂ reduces A to B, and we claim that f̂ is Lipschitz with
constant c, where c is

c = max
{
k,
d(x̄, ȳ)
ε

,
d(x0, x̄)
n+ 1

,
d(x0, ȳ)
n+ 1

}
.

Fix arbitrary x, y ∈ X. If x, y ∈ X ′, then

d(f̂(x), f̂(y)) = d(f(x), f(y)) ≤ k · d(x, y) ≤ c · d(x, y)

by our choice of k ∈ ω. If x, y ∈ X \ X ′, then d(x, y) ≥ ε because both x and y

are ε-isolated, and either f̂(x) = f̂(y) or d(f̂(x), f̂(y)) = d(x̄, ȳ). Therefore in both
cases

d(f̂(x), f̂(y)) ≤ d(x̄, ȳ)
ε
· ε ≤ c · d(x, y).

Let now x ∈ X ′ and y ∈ X\X ′, and assume without loss of generality that f̂(y) = x̄

(the case f̂(y) = ȳ is analogous, just systematically replace x̄ with ȳ in the argument
below). Then either x̄ ∈ X ′, in which case d(f̂(x), f̂(y)) < n+1 ≤ d(x, y) ≤ c·d(x, y)
(since c ≥ k ≥ 1), or else

d(f̂(x), f̂(y)) = d(x0, x̄) =
d(x0, x̄)
n+ 1

· n+ 1 ≤ c · d(x, y).

The case x ∈ X \X ′ and y ∈ X ′ can be treated similarly, so in all cases we obtained
d(f̂(x), f̂(y)) ≤ c · d(x, y), as required. �

We now want to show that the SLOLip(d) principle holds for Borel subsets of X,
so let us fix arbitrary Borel A,B ⊆ X. Assume first that B = X. Then either
A = X, in which case the identity map on X witnesses A ≤Lip(d) B, or else ¬A 6= ∅,
in which case any constant map with value x̄ ∈ ¬A witnesses B ≤Lip(d) ¬A. The
symmetric case B = ∅ can be dealt with in a similar way, so in what follows we
can assume without loss of generality that B 6= ∅, X. Moreover, switching the role
of A and B in the argument above we may further assume that A 6= ∅, X. Set
A′ = A ∩X ′ and B′ = B ∩X ′. Since X ′ has bounded diameter, by Theorem 3.10
there is a Lipschitz function f : (X ′, d)→ (X ′, d) such that either f−1(B′) = A′ or
f−1(X ′ \ A′) = B′. Since ¬A ∩ X ′ = X ′ \ A′, applying Claim 3.17.1 we get that
either A ≤Lip(d) B or B ≤Lip(d) ¬A, as desired.

Finally, let us show that the Lip(d)-hierarchy on Borel subsets of X is also well-
founded. Suppose not, and let (An)n∈ω be a sequence of Borel subsets of X such
that An+1 <Lip(d) An for every n ∈ ω. Notice that this in particular implies
that An 6= ∅, X for every n ∈ ω. By Claim 3.17.1 and our choice of the An’s,
for all i < j there is no Lipschitz f : (X ′, dX′) → (X ′, dX′) reducing Ai ∩ X ′ to
Aj ∩X ′. Using Ramsey’s theorem, we get that there is an infinite I ⊆ ω such that
either ∀i, j ∈ I (i < j ⇒ Aj ∩ X ′ ≤Lip(dX′ )

Ai ∩ X ′), or else ∀i, j ∈ I (i < j ⇒
Aj ∩ X ′ �Lip(dX′ )

Ai ∩ X ′): in the former case the sequence (Ai ∩ X ′)i∈ω would
give an infinite (strictly) descending chain in the Lip(dX′)-hierarchy on X ′, while in
the latter it would give an infinite antichain (in the same hierarchy). Since X ′ has
bounded diameter and all the sets Ai ∩X ′ are clearly Borel in it, both possibilities
contradicts Theorem 3.10, and hence we are done. �
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Corollary 3.18. Let X = (X, d) be an ultrametric Polish space.Then the following
are equivalent:

(1) the diameter of X is nontrivially unbounded;
(2) (P(ω),⊆∗) embeds into Deg∆0

1
(Lip(d));

(3) the Lip(d)-hierarchy on Borel (equivalently, clopen) subsets of X is very
bad;

(4) the Lip(d)-hierarchy on Borel (equivalently, clopen) subsets of X is not very
good.

Hence Deg∆1
1
(Lip(d)) is either very good or very bad.

Proof. By Theorem 3.14 and Theorem 3.17. �

Corollary 3.19. Let X = (X, d) be a perfect ultrametric Polish space. Then
(1) X has bounded diameter ⇐⇒ the Lip(d)-hierarchy on Borel (equivalently,

clopen) subsets of X is very good;
(2) X has unbounded diameter ⇐⇒ the Lip(d)-hierarchy on Borel (equiva-

lently, clopen) subsets of X is very bad, and in fact in this case the partial
order (P(ω),⊆∗) embeds into Deg∆0

1
(Lip(d)).

Let us consider again the ultrametrics dφ introduced in Definition 3.2.

Corollary 3.20. Let φ : ω → R+ have unbounded range and suppose that inf rg(φ) >
0. Then (P(ω),⊆∗) embeds into both the Lip(dφ)- and L(dφ)-hierarchy on clopen
subsets of ωω, and therefore both Deg∆0

1
(Lip(dφ)) and Deg∆0

1
(L(dφ)) are very bad.

Conversely, if φ has bounded range, then the Lip(dφ)-hierarchy Deg∆1
1
(Lip(dφ)) on

Borel subsets of ωω is very good.

Proof. Observe that (ωω, dφ) is a perfect ultrametric Polish space, and that it has
unbounded diameter if and only if the rg(φ) is unbounded in R+; then apply The-
orems 3.14 and 3.10. �

4. Nonexpansive reducibilities

Definition 4.1. Let X = (X, d) be an ultrametric Polish space. We say that R(d)
contains an honest increasing sequence if it contains a strictly increasing sequence
(rn)n∈ω such that for some sequences (xn)n∈ω, (yn)n∈ω of points in X the following
conditions holds:

(i) d(xn, xm) = rmax{n,m} for all distinct n,m ∈ ω;
(ii) d(x0, y0) < r0 and d(xn+1, yn+1) < d(xn, yn) for all n ∈ ω.

The above condition is somewhat technical, but in case X = (X, d) is a perfect
ultrametric Polish space it is immediate to check that R(d) contains an honest
increasing sequence if and only if one of the following equivalent11 conditions are
satisfied:

(1) there is X ′ ⊆ X such that R(dX′) has order type ω (with respect to the
usual ordering on R);

(2) there is a sequence (xn)n∈ω of points in X and a strictly increasing sequence
(rn)n∈ω of distances in R(d) such that d(xn, xm) = rmax{n,m} for all distinct
n,m ∈ ω.

11To see that these two conditions are indeed equivalent, argue as in the first part of the proof
of Theorem 3.14.
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Notice also that if the diameter of an ultrametric Polish space X = (X, d) is
nontrivially unbounded, then R(d) contains an honest increasing sequence by the
first part of the proof of Theorem 3.14.

Theorem 4.2. Let X = (X, d) be a ultrametric Polish space such that R(d) con-
tains an honest increasing sequence. Then there is a map ψ from P(ω) into the
clopen subsets of X such that for all a, b ⊆ ω

a ⊆∗ b ⇐⇒ ψ(a) ≤L(d) ψ(b).

Proof. Argue similarly to Theorem 3.14, with the following variations:

(a) let the sequences (xn)n∈ω, (yn)n∈ω, and (rn)n∈ω constructed at the beginning
of the proof of Theorem 3.14 be witnesses of the fact that R(d) contains an
honest increasing sequence (forgetting about the extra properties required in
Theorem 3.14), and set sn = d(xn, yn);12

(b) given a ⊆ ω, define ψ(a) as before, i.e. set ψ(a) =
⋃
i∈âBd(xi, si), where

â = {2i | i ∈ ω} ∪ {2i+ 1 | i ∈ a};
(c) to prove the backward direction, use an argument similar to that of Theo-

rem 3.14, but dropping any reference to the integer n (this simplification can
be adopted here because we have to deal only with nonexpansive functions).
More precisely: let f be a nonexpansive reduction of ψ(a) to ψ(b). Then for
every i ∈ â there is a unique j ∈ ω such that f(Bd(xi, si)) ⊆ Bd(xj , sj) (be-
cause of the choice of the xi, yi’s and the fact that f is nonexpansive). Arguing
as in Claim 3.14.3, one immediately sees that we cannot have j < i because in
such case si ≤ sj . Conclude as in the final part of the proof of Theorem 3.14,
using the fact that rk < rj for every j > k. �

Corollary 4.3. There is an ultrametric Polish space X1 = (X1, d1) whose set of
nonzero distances R(d1) is bounded away from 0 (hence it is countable and discrete)
such that (P(ω),⊆∗) embeds into the L(d1)-hierarchy on (clopen subsets of) X1.
Therefore Deg(L(d1)) = Deg∆0

1
(L(d1)) is very bad.

Proof. Let X1 = {xin | n ∈ ω, i = 0, 1} and set

d1(xin, x
j
m) =


0 if n = m and i = j
1
2 + 2−(n+1) if n = m and i 6= j

2− 2−max{n,m} if n 6= m.

It is easy to check that X1 = (X1, d1) is an ultrametric Polish space. Moreover
r ≥ 1

2 for every r ∈ R(d1), hence R(d1) is bounded away from 0. Moreover,
the sequences obtained by setting rn = 2 − 2−n, xn = x0

n, and yn = x1
n witness

that R(d1) contains an honest increasing sequence. Hence the result follows from
Theorem 4.2. �

Remark 4.4. Notice that if an ultrametric Polish space X = (X, d) satisfies the
hypothesis of Corollary 4.3 (i.e. it is such that R(d) is bounded away from 0), then
its Lip(d)-hierarchy is always (trivially) very good by Theorem 3.17 and the fact
that all its points are ε-isolated for ε = inf R(d) > 0.

12Clearly, the points xn and yn can again be chosen in any given countable dense set Q ⊆ X.
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Corollary 4.5. Given φ : ω → R+ such that inf rg(φ) > 0, if rg(φ) contains an
increasing ω-sequence then (P(ω),⊆∗) embeds into the L(dφ)-hierarchy on clopen
subsets of ωω, and therefore Deg∆0

1
(L(dφ)) is very bad.

Proof. Notice that (ωω, dφ) is always a perfect Polish space, and that R(dφ) has an
honest increasing sequence if and only if rg(φ) contains an increasing ω-sequence.
Then apply Theorem 4.2. �

Proposition 4.6. Suppose that X = (X, d) is an ultrametric Polish space such that
R(d) is either finite or a descending (ω-)sequence converging to 0, let I ≤ ω be the
cardinality of R(d), and let ρ be the unique order-preserving map from {2−i | i < I}
and R(d). Then there is a closed set C ⊆ ωω and a bijection f : C → X such that
for all x, y ∈ X

(∗) d(x, y) = ρ(d̄(f−1(x), f−1(y))).

In particular, the structures (P(X),≤L(d),¬) and (P(C),≤L(d̄),¬) are isomorphic.

Proof. Let us first assume that I = ω, i.e. that R(d) is a descending (ω-)sequence
converging to 0. Inductively define the family (As)s∈<ωω of subsets of X by induc-
tion on lh(s) as follows. Set A∅ = X. Then let {Bs,j | j < J} (for some J ≤ ω) be
an enumeration without repetitions of the collection {Bd(x, ρ(2− lh(s))) | x ∈ As},
and set Asaj = Bs,j if j < J and Asaj = ∅ otherwise. It is easy to check that the
family (As)s∈<ωω is a Luzin scheme with vanishing diameter consisting of clopen
sets. Hence letting C = {x ∈ ωω |

⋂
n∈ω Ax�n 6= ∅} and f : C → X be defined

by letting f(x) be the unique element of
⋂
n∈ω Ax�n, we get that C and f are as

required.
Assume now that I is finite, so that, in particular, X is a discrete space. Induc-

tively define the sets As as above for all s ∈ <ωω of length ≤ I. Then if lh(s) = I
the set As is either empty or a singleton. Letting C = {sa0(ω) | lh(s) = I, As 6= ∅}
and defining f : C → X by letting f(sa0(ω)) be the unique element of As we again
have that C and f are as required.

For the last part, notice that the map P(X) → P(C) : A 7→ f−1(A) is the
desired isomorphism. To see this, simply notice that (∗) implies that L(d) = {f ◦
h ◦ f−1 | h ∈ L(d̄C)}. �

Theorem 4.7. Suppose that X = (X, d) is an ultrametric Polish space such that
R(d) is either finite or a descending (ω-)sequence converging to 0. Then the L(d)-
hierarchy Deg∆1

1
(L(d)) on Borel subsets of X is very good.

Proof. By Proposition 4.6, it is clearly enough to show that the L(d̄C)-hierarchy
on Borel subsets of C is very good: but this easily follows from the existence of a
nonexpansive retraction of (ωω, d̄) onto (C, d̄C), Lemma 2.4, and the fact that the
L(d̄)-hierarchy on the Borel subsets of ωω is very good. �

Corollary 4.8. Let φ : ω → R+ and suppose that rg(φ) is finite (so that trivially
inf rg(φ) > 0). Then the L(dφ)-hierarchy Deg∆1

1
(L(dφ)) on Borel subsets of ωω is

very good.

Proof. Simply observe that under our assumptions the set R(dφ) is always an ω-
sequence converging to 0, and then apply Theorem 4.7. �
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Let us now consider the general problem of determining the character of the
L(dφ)-hierarchy on Borel subsets of ωω for an arbitrary φ : ω → R+ with inf rg(φ) >
0. By Corollary 4.5, if rg(φ) contains an increasing ω-sequence, then Deg∆1

1
(L(dφ))

is very bad, hence we can assume without loss of generality that rg(φ) has order
type13 α∗ for some countable ordinal α. Corollary 4.8 considered the subcase where
α is finite: the next proposition considers instead the special (but yet significant)
subcase where α = ω and φ is injective.

Notation 4.9. Given a set A ⊆ ωω and a finite sequence s ∈ <ωω, let saA = {sax |
x ∈ A}. When lh(s) = 1, we simplify the notation by setting naA = 〈n〉aA, and
with a little abuse of notation we set raA = {rax | x ∈ A} ⊆ {r} × ωω also when
r is not a natural number. Finally, given a family (An)n∈ω of subsets of ωω, we set⊕

n∈ω An =
⋃
n∈ω n

aAn.

Theorem 4.10. Let φ : ω → R+ be such that inf rg(φ) > 0, and suppose that φ is
injective and that rg(φ) has order type ω∗. Then the L(dφ)-hierarchy Deg∆1

1
(L(dφ))

on the Borel subsets of ωω is very good.

Proof. Using the usual game-theoretic arguments (see e.g. [And07]), it is easy to
see that if a Borel A ⊆ ωω is L(d̄)-selfdual, then its L(d̄)-degree [A]L(d̄) is followed
by an ω1-chain of L(d̄)-selfdual degrees (L (α)[A]L(d̄))α<ω1 , where the L (α)[A]L(d̄)

are recursively defined as follows:

(i) L (0)[A]L(d̄) = [A]L(d̄);
(ii) L (α+1)[A]L(d̄) = [0aC]L(d̄) for some/any C ∈ L (α)[A]L(d̄);

(iii) for limit α’s, L (α)[A]L(d̄) = [
⊕

n∈ω Cn]L(d̄), where Cn ∈ L (αn)[A]L(d̄) for each
n ∈ ω, and (αn)n∈ω is some/any increasing sequence cofinal in α.

We will use the following known facts about the Baire space (ωω, d̄).

• A set A is self-contractible (i.e. reducible to itself via a contraction) if and only
if it is L(d̄)-nonselfdual; in this case the iterates of the contraction are reductions
of A to itself and have a unique common fixed point (see [MR12, Corollary 4.4]).
• The L(d̄)-nonselfdual degrees coincide with the W(d̄)-nonselfdual degrees (see

e.g. [VW78, Theorem 3.1]).
• Every Lip(d̄)-selfdual degree [A]Lip(d̄) is of the form

⋃
{[0(n)aA′]L(d̄) | n < ω} for

some L(d̄)-selfdual set A′; if instead [A]Lip(d̄) is Lip(d̄)-nonselfdual, then [A]Lip(d̄) =
[A]L(d̄) (see [MR10a]).
• If A <Lip(d̄) B, then for all ε ∈ R+ there is a Lipschitz reduction of A to B with

constant ε (see the end of Section 4 in [MR12]).
• Let W = W(ωω) be the set of all continuous functions from ωω into itself,

which is clearly a reducibility. Then every W-selfdual degree [A]W is of the form⋃
{L (α)([A′]L(d)) | α < ω1} for some L(d̄)-selfdual set A′ (see e.g. [And07]).

13Given a linear order L = (L,≤), we denote by L∗ the reverse linear oder induced by L, i.e.
L∗ = (L,≤−1). Since α = {β | β < α} (for every ordinal α), we tacitly identify α with the linear

order α = (α,≤), so that α∗ = (α,≥).
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Note that (ωω, dφ) is isometric to the space Y =
⋃
r∈rg(φ) r

aωω equipped with
the ultrametric (which with a little abuse of notation will be denoted by dφ again)

dφ(rax, say) =


0 if r = s and x = y,

max{r, s} if r 6= s,

r · 2−(n+1) if r = s and n is least such that x(n) 6= y(n).

Claim 4.10.1. Every Borel subset C̄ of Y = (Y, dφ) is L(dφ)-equivalent to one of
the following (L(dφ)-)normal forms Ā (where in what follows A,An ⊆ ωω and < is
the usual order on the reals):

(1) Ā =
⋃
n∈ω r

a
nAn, where the sequence of the An’s is <Lip(d̄)-increasing and

the sequence (rn)n∈ω in rg(φ) is strictly <-decreasing.
(2) Ā =

⋃
n∈ω r

a
nAn, where the sequence of the An’s is <L(d̄)-increasing, Am ≡Lip(d̄)

An for all m,n ∈ ω, and the sequence (rn)n∈ω in rg(φ) is strictly <-
decreasing.

(3) A is L(d̄)-nonselfdual and
(a) Ā = raA for some r ∈ rg(φ), or
(b) Ā = (ra0 A) ∪ (ra1 (¬A)) for some r0, r1 ∈ rg(φ) with r0 > r1, or
(c) Ā =

⋃
i∈ω r2i

aA ∪
⋃
i∈ω r2i+1

a(¬A) for some strictly <-decreasing
sequence (rn)n∈ω in rg(φ).

(4) A is L(d̄)-selfdual and
(a) Ā = raA for some r ∈ rg(φ), or
(b) Ā =

⋃
n∈ω r

a
nA for some strictly <-decreasing sequence (rn)n∈ω in

rg(φ).

Proof of the Claim. Let us sketch how to obtain these normal forms. We will often
use the following easy fact. Let D ⊆ rg(φ), ρ : D → rg(φ) be a non-<-increasing
map, {fr : ωω → ωω | r ∈ D} ⊆ L(d̄), and f ′ :

⋃
r∈rg(φ)\D(raωω) → Y be a

nonexpansive map (with respect to dφ): then the map f : Y → Y defined by

f(rax) =

{
ρ(r)afr(x) if r ∈ D
f ′(rax) otherwise

is in L(dφ).
Now let C̄ =

⋃
r∈rg(φ)(r

aCr) be an arbitrary Borel subset of (Y, dφ), and set
C = {Cr | r ∈ rg(φ)}, so that each Cr is a Borel subset of ωω. If C has no
Lip(d̄)-maximal element, choose a strictly <-decreasing sequence (rn)n∈ω in rg(φ)
such that (Crn)n∈ω is strictly <Lip(dφ)-increasing and <Lip(dφ)-cofinal in C. Then
Ā =

⋃
n∈ω Crn is in the normal form (1), and moreover it is easy to see that

Ā ≡L(dφ) C̄. Otherwise, if C has a Lip(d̄)-maximal element but no L(d̄)-maximal
element, then we can similarly find a set Ā in the normal form (2) which is L(dφ)-
equivalent to C̄.

Now suppose that there is an L(d̄)-maximal element B among the sets in C.
Suppose first that B is L(d̄)-nonselfdual.

If there is no C ∈ C with C ≡L(d̄) ¬B, then we choose some r ∈ rg(φ) with
Cr ≡L(d̄) B. Using the assumption inf rg(φ) > 0 and the fact mentioned at the be-
ginning of the proof that L(d̄)-nonselfdual sets are self-contractible with arbitrarily
small Lipschitz constant, it follows that Ā = raCr ≡L(dφ) C̄, and Ā is in the normal
form (3a). (For the nontrivial reduction, for each t ∈ rg(φ) choose a L(d̄)-reduction
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ft : ωω → ωω of Ct to Cr, let ε ∈ R+ be such that max rg(φ) · ε ≤ inf rg(φ), and
let g : ωω → ωω be a Lipschitz map with constant ε reducing Cr to itself. Define
f : Y → Y by setting f(tax) = rag(ft(x)) for every t ∈ rg(φ) and x ∈ ωω: it is
easy to check that f ∈ L(dφ) reduces C̄ to Ā.)

If there is a <-minimal s ∈ rg(φ) with Cs ≡L(d̄) ¬B, let r be either the <-minimal
element of rg(φ) with Cr ≡L(d̄) B, or the <-largest element of rg(φ) satisfying both
Cr ≡L(d̄) B and r < s. Then Ā = raCr ∪ saCs is in the normal form (3b), and
arguing as above one can check that C̄ ≡Ld(φ) Ā using the assumption inf rg(φ) >
0 and the previously mentioned fact about self-contractions. (For the nontrivial
reduction, notice that we can assume without loss of generality that r < s (otherwise
we simply switch the role of Cr and Cs). Let D = {t ∈ rg(φ) | Ct ≡L(d̄) ¬B}, so
that s = minD. For t ∈ rg(φ), set ρ(t) = s if t ∈ D and ρ(t) = r otherwise. Let
ft be a L(d̄)-reduction of Ct to Cs if t ∈ D and of Ct to Cr otherwise. Let ε and g
be as above. Then the map f : Y → Y defined by f(tax) = saft(x) if t ∈ D and
f(tax) = rag(ft(x)) otherwise is an L(dφ)-reduction of C̄ to Ā.)

If there are unboundedly many s ∈ rg(φ) with Cs ≡L(d̄) ¬B and an <-minimal
r ∈ rg(φ) with Cr ≡L(d̄) B, argue as in the previous paragraph switching the role
of B and r with, respectively, ¬B and s.

In the remaining case there are unboundedly many r ∈ rg(φ) with Cr ≡L(d̄) B

and unboundedly many s ∈ rg(φ) with Cs ≡L(d̄) ¬B. In this situation it is easy to
see that C̄ is L(dφ)-equivalent to a set Ā in the normal form (3c).

Finally, suppose that C has a L(d̄)-maximal elementB and thatB is L(d̄)-selfdual.
It follows from the remarks at the beginning of the proof that there is an L(d̄)-
nonselfdual set A with B ∈ L (λ+n)[A ⊕ (¬A)]L(d̄) for some n ∈ ω and λ = 0 or λ
a countable limit ordinal. Set D = {r ∈ rg(φ) | Cr ∈

⋃
j∈ω L (λ+j)[A⊕ (¬A)]L(d̄)},

and define the index of any r ∈ D as i(r) = r ·2−(j+1), where j is the unique natural
number such that Cr ∈ L (λ+j)[A ⊕ (¬A)]L(d̄). Then for any r, s ∈ D for which
i(r) ≤ i(s) there is an L(dφ)-map f such that f(saωω) ⊆ raωω and f reduces saCs
to raCr.

Suppose first that there is j ≤ n such that Crm ∈ L (λ+j)[A ⊕ (¬A)]L(d̄) for
some strictly <-descending sequence (rm)m∈ω of distances in rg(φ), and let k be
the largest of such j’s. If n = k, then Ā =

⋃
m∈ω r

a
mCrm is in the normal form (4b)

and Ā ≡L(dφ) C̄. If n > k, let r be <-smallest in rg(φ) such that Cr ≡L(d̄) B. If
inf rg(φ) < r · 2n−k, then using the fact that Cr is reducible to each of the Crm ’s
with some Lipschitz function with constant 2n−k we get that C̄ ≡L(dφ) C̄

′, where

C̄ ′ = C̄ \
(⋃

t≥r t
aωω

)
. Applying recursively this same procedure, after finitely

many steps we will end up with a set C̄∗ ≡L(dφ) C̄ such that either the Crm are
L(d̄)-maximal in C∗, or else there is an <-smallest r such that Cr is L(d̄)-maximal
in C∗, Cr ∈ L (λ+n∗)[A⊕ (¬A)]L(d̄) for some k < n∗ ≤ n, and r · 2n∗−k ≤ inf rg(φ).
In the former case we again easily get that Ā =

⋃
m∈ω r

a
mCrm is in the normal form

(4b) and Ā ≡L(dφ) C̄
∗ ≡L(dφ) C̄. In the latter case, we get that Ā = raCr is in

normal form (4a) and Ā ≡L(dφ) C̄
∗ ≡L(dφ) C̄. (To see that C̄∗ ≤L(dφ) Ā, which is

the only nontrivial reduction, notice that we may assume without loss of generality
that all the Crm ’s equal a fixed set C 6= ωω, that Cr = 0(n∗−k)aC, and that for
t /∈ {r} ∪ {rm | m ∈ ω} either Ct = ∅ or Ct = 0(it+1)aC for some it < n∗ − k. Fix
t ∈ rg(φ). If t ≥ r then let ft : ωω → ωω be a L(d̄)-reduction of Ct to Cr. If t = rm
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for some m ∈ ω, define ft by setting ft(x) = 0(n∗−k)ax for all x ∈ ωω. Finally, if
t < r and t 6= rm, then let ft be a constant map with value 0(n∗−k)ay for some
fixed y /∈ C if Ct = ∅, and otherwise set ft(x) = 0(n∗−k−it−1)ax for all x ∈ ωω.
Then the map f : Y → Y defined by setting f(tax) = raft(x) for all t ∈ rg(φ) and
x ∈ ωω is a L(dφ)-reduction of C̄ to Ā.)

Therefore we may assume without loss of generality that D is finite. Actually,
applying the standard arguments used above it is not difficult to see that we may
also assume that there are m ∈ ω, a strictly <-decreasing sequence r0, . . . , rm ∈
rg(φ), and a strictly decreasing sequence n0, . . . , nm ∈ ω such that:

• Crk ∈ L (λ+nk)[A⊕ (¬A)]L(d̄) for all k ≤ m;
• i(rk) < i(rk+1) for all k < m;
• Ct = ∅ for all t ≥ rm which are not of the form rk for some k ≤ m;
• Ct <Lip(d̄) Crm for all t < rm.

Assume first that λ > 0. Then without loss of generality we may assume
that Crk = 0(nk)a⊕

l∈ω(0(l)aC ′l) for all k ≤ m, where the C ′l ’s are strictly L(d̄)-
increasing subsets of ωω such that their L(d̄)-degrees are cofinal below L (λ)[A ⊕
(¬A)]L(d̄). Notice that in this case i(rk) measures the dφ-distance between each pair
of subsets of Crk of the form 0(nk)ala0(l)aC ′l . Assume first that there is l ∈ ω such
that Ct ≤L(d̄) C

′
l for all t < rm. Then it is not hard to see that Ā = r0

aCr0 is in
normal form (4a) and Ā ≡L(dφ) C̄. (An L(dφ)-reduction f of C̄ to Ā may be defined
on sets of the form taωω for t < rm by fixing l′ ≥ l such that 2−l

′ ≤ inf rg(φ) and an
L(d̄)-reduction ft of Ct to C ′l′ , and then setting f(tax) = r0

a0(n0)al′a0(l′)aft(x);
for t ≥ rm, the map f may be defined on taωω in the obvious way using the property
of the i(rk)’s mentioned above.) Now assume instead that the family {Ct | t < rm}
is L(d̄)-cofinal below

⊕
l∈ω C

′
l ≡L(d̄)

⊕
l∈ω 0(l)aC ′l ∈ L (λ)[A⊕ (¬A)]L(d̄). Then us-

ing arguments similar to the one already applied, one gets that if i(r0) ≤ inf rg(φ)
then we can again set Ā = r0

aC0, so that Ā is in normal form (4a), and prove
that Ā ≡L(dφ) C̄, while if i(r0) > inf rg(φ) then we may choose a strictly decreasing
sequence (th)h∈ω so that t0 < min{rm, i(r0)} and the Cth ’s are ≤L(d̄)-increasing,
all in the same Lip(d̄)-degree, and cofinal below

⊕
l∈ω 0(l)aC ′l , and then prove that

Ā =
⋃
h∈ω th

aCth is in normal form (2) and L(dφ)-equivalent to C̄.
Finally, let λ = 0. In this case we may assume without loss of generality that

Crk = 0(nk)a(A ⊕ ¬A) for all k ≤ m, and i(rk) measures the distance between
the copies of A and ¬A in Crk . Let us first suppose that there are arbitrarily
small r, s > inf rg(φ) with Cr ≡L(dφ) A and Cs ≡L(dφ) ¬A. If i(r0) ≤ inf rg(φ), we
let Ā = ra0 Cr0 ; then Ā is in the normal form (4a) and arguing as above we get
Ā ≡L(dφ) C̄. If i(r0) > inf rg(φ), we choose a strictly decreasing sequence (th)h∈ω
in rg(φ) with t0 < min{rm, i(r0)}, Ct2p ≡L(d̄) A and Ct2p+1 ≡L(d̄) ¬A, and let
Ā =

⋃
h∈ω th

aCth . Then Ā is in the normal form (3c) and, arguing as in the case
λ > 0, we get Ā ≡L(dφ) C̄. Next, let us suppose that there are no r, s < i(r0) in
rg(φ) with Cr ≡L(d̄) A and Cs ≡L(d̄) ¬A. Let Ā = ra0 Cr0 . Then Ā is in the normal
form (4a), and using the self-contractibility of A and inf rg(φ) > 0 we again obtain
Ā ≡L(dφ) C̄. Finally, suppose that there are r, s < i(r0) in rg(φ) with Cr ≡L(d̄) A

and Cs ≡L(d̄) ¬A and that there is an <-minimal r ∈ rg(φ) with Cr ≡L(d̄) A (the
analogous situation in which there is a minimal r ∈ rg(φ) with Cr ≡L(d̄) ¬A can
be treated similarly). We consider the <-smallest s ∈ rg(φ) with Cs ≡L(d̄) ¬A
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if this exists, and any s ∈ rg(φ) with s < r and Cs ≡L(d̄) ¬A otherwise. Then
Ā = raA ∪ sa(¬A) is in the normal form (3b) and Ā ≡L(dφ) C̄. �

By Claim 4.10.1, to show that SLOL(dφ) holds for Borel subsets of Y it is enough
to show that for every pair of Borel sets Ā and B̄ in L(dφ)-normal form, either
Ā ≤L(dφ) B̄ or B̄ ≤L(dφ) ¬Ā: we are now going to sketch the proof of this fact, by
considering all the possible combinations of normal forms.

If Ā is in case (1) of the normal form, then it is L(dφ)-selfdual, and hence semi-
linearity is equivalent to showing that Ā ≤L(dφ) B̄ or B̄ ≤L(dφ) Ā. LetA′ = ⊕n∈ωAn,
so that [A′]L(d̄) = supn∈ω[An]L(d̄). First assume that B̄ is either in normal form (1)
or (2), and let B′ =

⊕
n∈ω Bn. If A′ <L(d̄) B

′ (equivalently, A′ <Lip(d̄) B
′), then we

get Ā ≤L(dφ) B̄, and similarly switching the role of A and B. If instead A′ ≡L(d̄) B
′,

then we get Ā ≡L(dφ) B̄. Assume now that B̄ is either in normal form (3) or
(4). Then using B in place of B′ in the argument above (and noticing that either
A′ ≤Lip(d̄) B or else B ≤L(d̄) An for all sufficiently large n ∈ ω) we get again that Ā
is L(dφ)-comparable with B̄, as required.

Let now Ā be in normal form (2). If B̄ is in normal form (2) too, arguing as in
the previous case we compare A′ =

⊕
n∈ω An and B′ =

⊕
n∈ω Bn with respect to

L(d̄). Similarly, if B̄ is in case (3), we compare A′ with B with respect to L(d̄), and
then argue as above again. Now let us suppose that B̄ is in case (4). If An <Lip(d̄) B

for all n ∈ ω, then Ā ≤L(dφ) B̄. Otherwise B ≤L(d̄) An for some n ∈ ω and thus
B̄ ≤L(d̄) Ā.

We now assume that Ā is in normal form (3). If B̄ is in normal form (3) too,
we can prove Ā ≤L(dφ) B̄ or B̄ ≤L(dφ) ¬Ā by first comparing A and B with re-
spect to Lip(d̄)-reducibility (equivalently, L(d̄)-reducibility), using the assumption
inf rg(φ) > 0. If Ā ≡Lip(d̄) B̄ and both Ā and B̄ are in case (3b), then we simply
compare the minimum of the values r1 appearing in their normal forms. The com-
parison is straightforward in all other cases for Ā and B̄ in the normal form (3)
with Ā ≡Lip(d̄) B̄. If instead B̄ is in case (4), using the assumption inf rg(φ) > 0,
we simply need to compare the L(d̄)-degrees of A and B; all possible relationships
between these degrees with respect to ≤L(d̄) can be transferred back to analogous
relationships between Ā and B̄ with respect to ≤L(dφ).

Let us finally suppose that Ā and B̄ are both in case (4); this is the more delicate
case. Since Ā and B̄ are clearly L(dφ)-selfdual, it is again sufficient to show that
they are L(dφ)-comparable. First assume that Ā and B̄ are both in case (4a), where
Ā = raA and B̄ = saB. If A and B are not in the same Lip(d̄)-degree, then it is
easy to compare Ā and B̄ with respect to ≤L(dφ), and if A ≤L(d̄) B then Ā ≤L(dφ) B̄.
Hence we can assume that A ≡Lip(d̄) B and B ≤L(d̄) A, so that A ≡L(d̄) 0(n)aB for
some n ∈ ω. Using the assumption inf rg(φ) > 0, it is now easy to check that
Ā ≤L(dφ) B̄ holds if s · 2n ≤ r, while B̄ ≤L(dφ) Ā holds if r ≤ s · 2n.

Suppose now that Ā = raA is in case (4a) and B̄ is in case (4b). We have
Ā ≤L(dφ) B̄ if A ≤L(d̄) B holds, and moreover B <Lip(d̄) A implies that 0(n)aB

≤L(d̄) A for all n ∈ ω (which in turn implies B̄ ≤L(dφ) Ā). Thus we can assume
that A ≡Lip(d̄) B and B ≤L(d̄) A, so that again A ≡L(d̄) 0(n)aB for some n ∈ ω, and
let s = inf rg(φ). Arguing similarly to the previous case, it is easy to check that
Ā ≤L(dφ) B̄ holds if s · 2n < r, while B̄ ≤L(dφ) Ā holds if s · 2n ≥ r.
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The last case that needs to be considered is when both Ā and B̄ are in case (4b).
We may assume that A ≤L(d̄) B and hence Ā ≤L(dφ) B̄. This concludes the proof
that SLOL(dφ) holds for Borel subsets (in normal form) of Y .

It remains to show that the L(dφ)-hierarchy on Borel subsets of Y is well-founded,
and for this we may again concentrate only on sets in normal form. Assume towards
a contradiction that there is a family (Ā(i))i∈ω of Borel subsets of Y in normal form
such that Ā(i+1) <L(dφ) Ā

(i) for all i ∈ ω. Since there are only finitely many types
of normal form, passing to a subsequence if necessary we may further assume that
all the Ā(i)’s share the same type of normal form. We now consider the various
possibilities.

First assume that the Ā(i)’s are all in normal form (1), and set (A′)(i) =⊕
n∈ω A

(i)
n , where the sets A(i)

n ⊆ ωω are those appearing in the normal form of Ā(i).
Notice that all the (A′)(i) are necessarily L(d̄)-selfdual. Then (A′)(i+1) <L(d̄) (A′)(i),
because otherwise (A′)(i) ≤L(d̄) (A′)(i+1), whence one would easily get Ā(i) ≤L(dφ)

Ā(i+1), contradicting the choice of the Ā(i)’s. Therefore the (A′)(i) are strictly L(d̄)-
decreasing, contradicting the fact that the L(d̄)-hierarchy on Borel subsets of ωω is
well-founded.

The case where all the Ā(i)’s are in normal form (2) can be dealt with in the
same way, and a similar argument works also for the other cases with the following
minor modifications:
• When considering normal forms as in (3a), set (A′)(i) = A(i), where A(i) ⊆ ωω

is the set appearing in the normal form of Ā(i), and pass to a subsequence if
necessary to avoid the situations in which A(i+1) ≡L(d̄) ¬A(i);
• When considering normal forms as in (3b) or (3c), set (A′)(i) = (0aA(i)) ∪

(1a(¬A(i))), where A(i),¬A(i) ⊆ ωω are the sets appearing in the normal form
of Ā(i). In case (3b), we may need to pass to a subsequence ((A′)(il))l∈ω to
guarantee that A(il+1) <L(d̄) A

(il).
• When considering normal forms as in (4), set (A′)(i) = A(i), where A(i) ⊆ ωω is

the set appearing in the normal form of Ā(i). In case (4a) it may be necessary
to first pass to a subsequence ((A′)(il))l∈ω to guarantee that the sequence of the
r(il)’s appearing in the canonical form of Ā(il) is not <-increasing.

This concludes the proof of the well-foundness of ≤L(dφ) on Borel subsets of Y , and
hence of the entire proposition. �

Corollaries 4.5, 4.8, and Theorem 4.10 already cover many interesting cases, and
using the methods developed in the proof of Theorem 4.10 it seems plausible to
conjecture that if the range of φ does not contain increasing ω-sequences, then the
L(dφ)-hierarchy on Borel subsets of ωω is well-founded. However, the general prob-
lem of determining the character of the L(d)-hierarchy on an arbitrary ultrametric
Polish space X = (X, d) remains open:

Question 4.11. Let X = (X, d) be an ultrametric (perfect) Polish space such
that R(d) does not contain an honest increasing sequence, and assume that R(d) is
neither finite nor a (ω-)sequence converging to 0. Is the L(d)-hierarchy Deg∆1

1
(L(d))

on the Borel subsets of X (very) good?

Remark 4.12. In order to answer Question 4.11, it may be useful to note the fol-
lowing. It is proved in [GS11, Theorem 4.1] that every ultrametric Polish space
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X = (X, d) is isometric to a closed subspace of the ultrametric Urysohn space
UR(d) = {(xn)n∈ω ∈ ω(R(d) ∪ {0}) | xn ≥ xn+1 for all n and limn→∞ xn = 0}
equipped with the complete ultrametric

dUR(d)((xn)n∈ω, (yn)n∈ω) =

{
0 if xn = yn for all n,
max(xn, yn) if n is least such that x(n) 6= y(n).

Suppose that X = (X, d) is a perfect ultrametric Polish space and choose a closed
subspace Y of (UR(d), dUR(d)) such that Y = (Y, dUR(d)) is isometric to X. Let
S(Y ) = {y � n | y ∈ Y, n ∈ ω}, and set D(s) = {r ∈ R+ | ∃x ∈ ω(R(d) ∪
{0}) (sarax ∈ Y )} for each s ∈ S(Y ). Notice that S(Y ) and D(s) are countable
since R(d) is countable. If there is a strictly increasing sequence (rn)n∈ω in D(s)
for some s ∈ S(Y ), then we obtain an honest increasing sequence in R(d) from the
assumption that (X, d) is perfect. If there is no honest increasing sequence in R(d),
it follows that the order type of each D(s) is α∗s for some countable ordinal αs.

Finally, we want to show that, even if by Theorem 4.2 it is possible that the
L(d)-hierarchy Deg∆1

1
(L(d)) on Borel subsets of a given ultrametric Polish space

X = (X, d) with bounded diameter is very bad, a natural (modest) strengthening
of the preorder ≤L(d) already yields to a semi-linearly ordered hierarchy.

Definition 4.13. Suppose X = (X, d) is an ultrametric Polish space, and let
A,B ⊆ X. Let us write A ≤Lip(d,L) B if there is a Lipschitz function f : (X, d) →
(X, d) with constant L ∈ R+ such that A = f−1(B). We say that A is almost
nonexpansive reducible to B (A ≤aL(d) B in symbols) if A ≤Lip(d,L) B for every
1 < L ∈ R+.

Notice that the relation ≤aL(d) is a preorder (for the transitivity use the fact
that if f, g : X → X are Lipschitz functions with constant L,L′, respectively, then
g ◦ f is Lipschitz with constant L · L′). Moreover, ≤aL(d) is strictly between ≤L(d)

and ≤Lip(d). Even if literally ≤aL(d) is not of the form ≤F for some reducibility F
on X, with a little abuse of notation and terminology we can nevertheless consider
the aL(d)-hierarchy on (Borel subsets of) X, the Semi-Linear Ordering principle
SLOaL(d), and so on (with the obvious definitions).

Proposition 4.14. Let X = (X, d) be an ultrametric Polish space with bounded
diameter. Then the aL(d)-hierarchy on the Borel subsets of X is semi-linearly
ordered, and hence not bad.

Proof. Given L > 1, let dL : X × X → R+ be defined by dL(x, y) = min({Ln |
d(x, y) ≤ Ln and n ∈ Z}) if x, y ∈ X are distinct, and by dL(x, y) = 0 if x = y ∈ X.
Then dL is a complete ultrametric onX compatible with the metric topology τd, and
since we assumed thatX has bounded (d-)diameter we also have that R(dL) ⊆ {Ln |
n ∈ Z} is either finite, or a decreasing sequence converging to 0. By Theorem 4.7,
this means that the L(dL)-hierarchy on Borel subsets of X is very good, and hence,
in particular, semi-linearly ordered. Moreover, id : (X, d) → (X, dL) is Lipschitz
with constant L, while id : (X, dL)→ (X, d) is nonexpansive. Hence for all subsets
A,B of X:

• if A ≤Lip(d,L′) B, then A ≤Lip(dL,L·L′) B;
• if A ≤Lip(dL,L′) B, then A ≤Lip(d,L·L′) B.

In particular, A ≤L(dL) B implies that A ≤Lip(d,L) B.
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We claim SLOaL(d) holds for Borel subsets of X. By the observation above and
SLOLip(dL), for every fixed L > 1 we have that either A ≤Lip(d,L) B or B ≤Lip(d,L)

¬A. If for every n ∈ ω there is 1 < L ≤ 1 + 2−n such that A ≤Lip(d,L) B, then
A ≤aL(d) B. Similarly, if for every n ∈ ω there is 1 < L ≤ 1 + 2−n such that
B ≤Lip(d,L) ¬A, then B ≤aL(d) ¬A. Since one of the two possibilities necessarily
occurs, we get that either A ≤aL(d) B or B ≤aL(d) ¬A, as required. �

5. Compact ultrametric Polish spaces

It is well-known that any continuous function between metric spaces is auto-
matically uniformly continuous as soon as its domain is compact (see e.g. [Kec95,
Proposition 4.5]). In particular, this means that it does not make much sense to
consider the UCont(d)-hierarchy on a compact ultrametric Polish space X = (X, d):
since it coincide14 with the W(X)-hierarchy on X, its restriction to the Borel sets
is always very good by Proposition 1.2. However, one may wonder about the char-
acter of the Lip(d)- and the L(d)-hierarchy on (Borel subsets of) such an X: the
next results show that they must always be very good as well.

Proposition 5.1. Let X = (X, d) be a compact ultrametric Polish space. Then
either X (and hence also R(d)) is finite, or else R(d) is a strictly decreasing (ω-
)sequence converging to 0. In particular, X has bounded diameter.

Proof. It is clearly enough to show that for every r̄ ∈ R+, the set R(d)≥r̄ = {r ∈
R(d) | r ≥ r̄} is finite. To see this, observe that the family B = {Bd(x, r̄) | x ∈ X}
is a finite covering of X because X is compact. Assume towards a contradiction
that R(d)≥r̄ is infinite, let (rn)n∈ω be an enumeration without repetitions of it,
and let (xn)n∈ω and (yn)n∈ω be such that d(xn, yn) = rn for every n ∈ ω. Since
B is finite, there are distinct n,m ∈ ω such that d(xn, xm), d(yn, ym) < r̄. Since
rm ≥ r̄, we get that rn = d(xn, yn) = d(xm, ym) = rm, contradicting the choice of
the rn’s. �

Theorem 5.2. Let X = (X, d) be a compact ultrametric Polish space. Then both
the L(d)- and the Lip(d)-hierarchy on Borel subsets of X are very good.

Proof. Use Proposition 5.1 together with Theorems 4.7 and 3.10. �

In particular, we cannot change the ultrametric on the Cantor space ω2 to make
its nonexpansive or its Lipschitz hierarchy (very) bad: if d′ is any complete ultra-
metric compatible with the product topology on ω2, then both the Lip(d′)- and the
L(d′)-hierarchy on Borel subsets of ω2 are very good.15

Remark 5.3. Albeit Theorem 5.2 shows that there is no compact ultrametric Polish
space X = (X, d) with a (very) bad Lip(d)- or L(d)-hierarchy, Corollaries 3.16
and 4.3 shows that there are Kσ-spaces16 Xi = (Xi, di), i = 0, 1, such that:
• both Deg∆0

1
(L(d0)) and Deg∆0

1
(Lip(d0)) are very bad;

• Deg∆0
1
(L(d1)) is very bad, while Deg∆1

1
(Lip(d1)) is very good.

14In fact in the specific case of the Cantor space C = (ω2, d̄C) one can check that, although

Lip(d̄C) ( UCont(d̄C), the Lip(d̄C)- and the UCont(d̄C)-hierarchies coincide.
15However, analogously to [MR12, Section 5] it is still possible to define compatible complete

ultrametrics di, i = 0, 1, on C = ω2 so that L(d̄C) 6⊆ Lip(d0) (hence also L(d̄C) 6⊆ L(d0)), while

L(d̄C) 6⊆ L(d1) but Lip(d̄C) = Lip(d1).
16A topological space is Kσ if it is the union of countably many compact subsets.
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Let us now concentrate on the Cantor space C = ω2, and let us briefly consider
another kind of reducibility that was analyzed in [MR12] for the case of the Baire
space, namely the collection of all contraction mappings.

Notation 5.4. Let d̄ = d̄C be the usual metric on the Cantor space. We denote by
c(d̄) the collection of all contractions from C into itself, i.e. of all Lipschitz functions
f : C → C with constant strictly smaller than 1.

Given two sets A,B ⊆ C, set

A ≤c(d̄) B ⇐⇒ A = B ∨ ∃f ∈ c(d̄) (A = f−1(B)).

In fact, ≤c(d̄) = ≤F , where F is the reducibility on C obtained by adding the
identity id = idC to the set c(d̄).

Using the methods developed in [MR12, Section 4], it is easy to check that the
following hold:

Theorem 5.5. Let A,B be Borel subsets of C.
(1) If A 6≡L(d̄) B, then A ≤c(d̄) B ⇐⇒ A ≤L(d̄) B, while if A ≡L(d̄) B, then

A ≤c(d̄) B ⇐⇒ A �L(d̄) ¬A.
(2) A is selfcontractible (i.e. A = f−1(A) for some f ∈ c(d̄)) if and only if

A �L(d̄) ¬A.
(3) If A �L(d̄) ¬A, then [A]c(d̄) = [A]L(d̄), while if A ≤L(d̄) ¬A, then [A]c(d̄) =
{A}.

(4) A <c(d̄) B ⇐⇒ A <L(d̄) B.

Therefore, to describe the c(d̄)-hierarchy on Borel subsets of C it is enough to
determine how many sets are contained in each L(d̄)-degree of an L(d̄)-selfdual Borel
subset of C, and to combine this information with the well-known description of the
L(d̄)-hierarchy on Borel subsets of C (see [And07]). Let us first briefly describe
this last hierarchy. First of all, the hierarchy is semi-well-ordered. At the bottom
we found the L(d̄)-nonselfdual pair constituted by [C]L(d̄) = {C} and [∅]L(d̄) = {∅}.
Immediately after each L(d̄)-nonselfdual pair {[A]L(d̄), [¬A]L(d̄)} there is the L(d̄)-
degree of the L(d̄)-selfdual set A⊕¬A = (0aA)∪(1a(¬A)) = {0ax | x ∈ A}∪{1ax |
x ∈ ¬A}. On the other hand, if A is L(d̄)-selfdual, then immediately after [A]L(d̄)

there is the L(d̄)-degree of the selfdual set 0aA = {0ax | x ∈ A}. Finally, at all
limit level there is always an L(d̄)-nonselfdual pair. Therefore we get the structure
represented in Figure 1, where bullets represent L(d̄)-degrees and each L(d̄)-degree
is L(d̄)-reducible to another one if and only if it is (strictly) to the left of it.

• • • •
• • • · · ·︸ ︷︷ ︸

ω

• • • · · ·︸ ︷︷ ︸
ω

• • • · · ·︸ ︷︷ ︸
ω

· · · · · · • • • · · ·︸ ︷︷ ︸
ω

· · · · · ·
• • • •

↑
clopen sets

↑
limit levels

Figure 1. The L(d̄)-hierarchy on Borel subsets of C.

Notice that the first ω-chain of consecutive L(d̄)-selfdual degrees contains all
nontrivial clopen sets, while the first non-trivial L(d̄)-nonselfdual pair is formed by
all proper open and proper closed subsets of C.
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To compute the cardinality of a given [A]L(d̄) (for A ⊆ C), recall first that if
∅, C 6= A is clopen, then there is 0 6= n ∈ ω, called the level of A such that
A ≡L(d̄) N0(n) , where for an arbitrary s ∈ <ω2 we set Ns = {x ∈ C | s ⊂ x}
— in fact A is in the n-th L(d̄)-selfdual degree of the first ω-chain of consecutive
L(d̄)-selfdual degrees if and only if it is of level n.

Proposition 5.6. Let ∅, C 6= A ⊆ C.
(1) if A is clopen, then [A]L(d̄) contains exactly 22n − 22n−1

-many sets, where n
is the level of A;

(2) if A is not clopen, then there is an injection j : C → [A]L(d̄).

Proof. For each 0 6= n ∈ ω, the collection of all clopen sets L(d̄)-reducible to N0(n)

consists of all the sets of the form
⋃
s∈S Ns for S a subset of {s ∈ <ω2 | lh(s) = n}:

therefore there are 22n-many such sets. So if A is a clopen set of level n, then
to compute the cardinality of [A]L(d̄) we have to subtract to 22n the number of
sets which are not L(d̄)-equivalent to N0(n) , i.e. ∅, C, and all sets L(d̄)-reducible to
N0(n−1) : since there are 22n−1

-many such sets, we get that [A]L(d̄) contains exactly
22n − 22n−1

-many sets.
For the second part, let us first assume that A �L(d̄) ¬A. If A is a proper open

set, then the map j : C → [A]L(d̄) : x 7→ C \ {x} is as required. Therefore we can
assume without loss of generality that B ≤L(d̄) A for every proper closed set B. By
Theorem 5.5(2), there is f ∈ c(d̄) such that f−1(A) = A. Let i = 0, 1 be such that
f(C) ⊆ N〈i〉, and consider the map

j : C → [A]L(d̄) : x 7→ Ax = (A ∩N〈i〉) ∪ {(1− i)ax}.
Clearly j is an injection, so it remains only to show that A ≡L(d̄) Ax for every x ∈ C.
For one direction, f witnesses A ≤L(d̄) Ax. For the other direction, let gx ∈ L(d̄)
be a reduction of {(1 − i)ax} to A: then (idC � N〈i〉) ∪ (gx � N〈(1−i)〉) witnesses
Ax ≤L(d̄) A.

Finally, let A be L(d̄)-selfdual. Since by case assumption A is not clopen, there
is an L(d̄)-nonselfdual B 6= ∅, C and n ∈ ω such that A ≡L(d̄) 0(n)a(B ⊕ ¬B). Let
j′ : C → [B]L(d̄) be an injective map: then

j : C → [A]L(d̄) : x 7→ 0(n)a(j′(x)⊕ ¬j′(x))

is clearly as required. �

Since by Theorem 5.5 the c(d̄)-hierarchy on Borel subsets of C is the refinement of
the L(d̄)-hierarchy obtained by splitting each L(d̄)-selfdual degree into the singletons
of its elements, using Proposition 5.6 we can represent such hierarchy as in Figure 2,
where the bullets represent the c(d̄)-degrees and the boxes around them represent
the L(d̄)-degrees they come from (notice that by Proposition 5.6(1) in the second
column there are 12 different c(d̄)-degrees, while in the third column we already
find 240 distinct c(d̄)-degrees!).

Proposition 5.6 and Theorem 5.5 also imply the following corollary.

Corollary 5.7. (1) The c(d̄)-hierarchy Deg∆1
1
(c(d̄)) on Borel subsets of C is bad

but not very bad. In fact it contains antichains of size the continuum.
(2) The c(d̄)-hierarchy DegΣ0

1∪Π0
1
(c(d̄)) on open or closed subsets of C is good but

not very good.
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Figure 2. The c(d̄)-hierarchy on Borel subsets of C.

Notice that Corollary 5.7(2) gives a partial answer to [MR12, Question 6.3].
However, such solution is not completely satisfactory, as we needed to restrict
our hierarchy to a very small class of subsets of C — of course it would be more
interesting to find a reducibility F (on some Polish space X) inducing a good but
not very good hierarchy on the entire collection of Borel subsets of X (or, under
AD, even on the entire P(X)). This last problem seems to be completely open,
but the next example shows that if the requirement that the preorder inducing the
hierarchy be of the form ≤F (for some reducibility F on X) is dropped, then one
can obtain a “natural” hierarchy on the collection of all Borel subsets of ωω which
is good but not very good .

Example 5.8. Given a set R ⊆ R+ and A,B ⊆ ωω such that A ≤Lip(d̄) B, let
LA,B = inf{0 < L ∈ R+ | A ≤Lip(d̄,L) B}, where ≤Lip(d̄,L) is as in Definition 4.13.
Then set

A ≤R B ⇐⇒ A ≤Lip(d̄) B ∧ LA,B ∈ R ∪ {0, 1}.

Notice that ≤R is always reflexive: in fact, either A �Lip(d̄,L) A for all L < 1
(in which case the identity function witnesses LA,A = 1), or else by considering
arbitrarily large powers of any witness of A ≤Lip(d̄),L A (for some L < 1) we see
that LA,A = 0. In contrast, notice that in general ≤R need not to be transitive.
However, when ≤R actually happens to be a preorder (as in all the relevant cases
considered below), then with a little abuse of terminology we can consider the
≤R-hierarchy on Borel subsets of ωω (with the obvious definition).

Using the methods introduced at the end of [MR12, Section 4], it is easy to
see that if A,B ⊆ ωω are Borel sets such that A <Lip(d̄) B, then also A <R B,
because in this case LA,B = 0. Moreover, since by [MR12, Corollary 4.4] if A ⊆ ωω
is Lip(d̄)-nonselfdual (equivalently: L(d̄)-nonselfdual), then A ≤Lip(d̄,L) A for every
L > 0, we get that for such an A, A ≤L(d̄) B ⇒ A ≤R B for every B ⊆ ωω, and
if R ⊆ (0, 1] we in fact have that A ≤L(d̄) B ⇐⇒ A ≤R B. Finally, if A ⊆ ωω

is L(d̄)-selfdual and B ∈ [A]L(d̄), then A ≡R B because [MR12, Proposition 4.2]
implies that all the witnesses of A ≤L(d̄) B and B ≤L(d̄) A cannot have Lipschitz
constant < 1. Summing up, we get that if R ⊆ (0, 1] (and ≤R is transitive), then
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the ≤R-hierarchy refines the L(d̄)-hierarchy, and may differ from it only within the
Lip(d̄)-selfdual degrees.

Let us now concentrate on the canonical examples given by Rn = (0, 2−n] (for
n ∈ ω). It is easy to check that if n ≤ 1, then the ≤R-hierarchy coincides with the
L(d̄)-hierarchy. However, if n > 1 and A is an L(d̄)-selfdual set, then

(†) A ≤Rn B ⇐⇒ A ≤L(d̄) B ∧ (B ≡L(d̄) A ∨ 0(n)aA ≤L(d̄) B).

Therefore the restriction of ≤Rn to the Borel subsets of ωω is always transitive
(hence a preorder), and it is also well-founded. Moreover, (†) also implies that
the antichains in ≤R have always size ≤ n. Since e.g. {0(i+1)aωω | i < n} is an
≤Rn -antichain of size precisely n consisting of clopen sets, we get that for all n ≥ 3
the ≤Rn -hierarchy on Borel subsets of ωω is good but not very good.

6. Wadge-like reducibilities under the Axiom of Choice

By (the comment following) Proposition 1.2, the L(d̄)-hierarchy Deg∆1
1
(L(d̄)) on

the Borel subsets of ωω is very good, and as already recalled the same is true
for larger classes of subsets of ωω if we further assume corresponding determinacy
axioms. It is therefore natural to ask what happens if, instead of assuming such
determinacy principles, we assume the Axiom of Choice AC or other strong choice
principles.

Similar considerations apply to arbitrary Polish spaces as well. It is shown
in [Sch12] that for every non-zero-dimensional Polish space X the W(X)-hierarchy
on Borel subsets of X already contains antichains of size the continuum, and in
fact [IST12] shows that if e.g. X = R then we can also embed (P(ω),⊆∗) into
Deg∆1

1
(W(X)) (but this last result cannot be extended to arbitrary X: as explained

in [MRSS12, Section 5.1], all continuous functions on the Cook continuum X are
either constant or the identity, and therefore all chains of subsets of X with respect
to continuous reducibility have length ≤ 2). However, [MRSS12] shows that for
every Polish space X, the Dα(X)-hierarchy on Borel subsets of X (where Dα(X)
denotes the collection of all ∆0

α-functions from X to itself) is always very good for
α ≥ ω, and that the same is true for α ≥ 3 if X is of dimension 6= ∞. Also these
last results extend to larger classes of subsets of X under suitable determinacy
assumptions, and therefore it is meaningful to ask what happens if instead we
assume AC.

Not surprisingly, it turns out that under choice all the above mentioned hier-
archies of degrees (on arbitrary subsets of X) become very bad. Clearly, Borel
determinacy forces us to consider non-Borel subsets of X to get such results: there-
fore in what follows we will concentrate only on uncountable (ultrametric) Polish
spaces.

Notation 6.1. If X is a set and A ⊆ X2, we denote by Ax the “vertical section”
determined by x ∈ X, i.e. we set Ax = {y ∈ X | (x, y) ∈ A}. Moreover, for every
cardinal µ we set [X]µ = {Y ⊆ X | |Y | = µ}.

Lemma 6.2 (AC). Let µ be an infinite cardinal and X be a set of size µ. Moreover,
let C ⊆ [X]µ, F be a collection of functions from X to itself, and suppose that
|C| = |F| = µ. Then there is a set A ⊆ X2 such that Ax ∩C �F Ay for all distinct
x, y ∈ X and all C ∈ C.
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Proof. We first recursively construct a sequence ({Ax,α, Bx,α | x ∈ X})α<µ such
that Ax,α ∩Bx,α = ∅, Ax,α ⊆ Ax,β , Bx,α ⊆ Bx,β , and |Ax,α ∪Bx,α| ≤ |2 · α| for all
α ≤ β < µ and x ∈ X.

Fix a surjection h : µ → C × F × X2, and set Ax,0 = Bx,0 = ∅ for all x ∈ X.
Let now 0 < α < µ, and assume that all sets of the form Ax,β , Bx,β for x ∈ X
and β < α have already been defined, so that we can set Ax,<α =

⋃
β<αAx,β and

Bx,<α =
⋃
β<αBx,β . Let (C, f, x, y) ∈ C ×F ×X2 be such that h(α) = (C, f, x, y),

and let C0 = C\(Ax,<α∪Bx,<α). Notice that |C0| = µ because |Ax,<α∪Bx,<α| < µ
and |C| = µ. We distinguish two cases: if |f(C0)| < µ, we choose distinct a, b ∈ C0

such that f(a) = f(b) (this is possible because |C0| = µ > |f(C0)|), and then we
set Ax,α = Ax,<α ∪ {a}, Bx,α = Bx,<α ∪ {b}, and Az,α = Az,<α, Bz,α = Bz,<α
for all z ∈ X distinct from x. If instead |f(C0)| = µ, we pick some a ∈ C0

with f(a) /∈ Ay,<α ∪ By,<α (which exists because |Ay,<α ∪ By,<α| < µ, and hence
f(C0) \ (Ay,<α ∪By,<α) 6= ∅), and then we set Ax,α = Ax,<α ∪ {a}, Bx,α = Bx,<α,
Ay,α = Ay,<α, By,α = By,<α ∪ {f(a)}, and Az,α = Az,<α, Bz,α = Bz,<α for all
z ∈ X distinct from x and y. This completes the recursive step of our construction,
and it is easy to check by induction on α < µ that the sets Ax,α, Bx,α are as
required.

Finally, we set Ax =
⋃
α<µAx,α, Bx =

⋃
α<µBx,α, and A = {(x, y) ∈ X2 | y ∈

Ax}, so that, in particular, Ax ∩ Bx = ∅ for every x ∈ X. It is straightforward to
check that the α-th step in the recursive construction above ensures that f is not a
reduction of Ax∩C to Ay, because either there are a ∈ Ax∩C and b ∈ Bx ⊆ X \Ax
such that f(a) = f(b), or else there is a ∈ Ax∩C such that f(a) ∈ By ⊆ X \Ay. �

Theorem 6.3 (AC). Let X = (X, d) be an uncountable ultrametric Polish space.
Then there is a map ψ : P(ω)→P(X) such that for all a, b ⊆ ω

(1) if a ⊆ b, then ψ(a) ≤L(d) ψ(b);
(2) if ψ(a) ≤Bor(X) ψ(b), then a ⊆ b.

In particular, (P(ω),⊆) embeds into the F-hierarchy on X for every reducibility
L(d) ⊆ F ⊆ Bor(X), hence Deg(F) is very bad.

Proof. We apply the Lemma 6.2 letting µ = |X| = 2ℵ0 , C be the set of all uncount-
able Borel subsets of X, and F = Bor(X) be the collection of all Borel functions
from X to itself. Thus we obtain a sequence of ≤Bor(X)-incomparable sets An ⊆ X
(the lemma gives more, but an ω-sequence is sufficient here). Notice that each An
is necessarily uncountable and that An 6= X, as otherwise in both cases we would
easily have An ≤Bor(X) Am for every m ∈ ω. Now choose a sequence (Xn)n∈ω
of pairwise disjoint uncountable clopen balls in X, and fix a Borel isomorphism
hn : X → Xn for every n ∈ ω. Given a ⊆ ω, set ψ(a) =

⋃
n∈a hn(An).

To see that ψ is as required, first suppose that a, b ⊆ ω are such that a ⊆ b, and
for every n ∈ b \ a pick a point yn ∈ Xn \ hn(An) (which exists because An 6= X).
Then we define f : X → X by setting

f(x) =

{
yn if x ∈ Xn for some n ∈ b \ a,
x otherwise.

Clearly f reduces ψ(a) to ψ(b), and it is easy to check that since d is an ultrametric
and the Xn are (cl)open balls, then f ∈ L(d): therefore ψ(a) ≤L(d) ψ(b), as required.

Now let a, b ⊆ ω be such that ψ(a) ≤Bor(X) ψ(b), let f ∈ Bor(X) be a witness of
this, and fix an arbitrary n ∈ a. Notice that f(ψ(a)) ⊆ ψ(b) ⊆

⋃
m∈bXm. Since



LIPSCHITZ AND UNIFORMLY CONTINUOUS REDUCIBILITIES 31

An is uncountable, this means that there is m ∈ b such that f−1(Xm) ∩ Xn is
uncountable. Fix ȳ ∈ X \ Am: setting C = h−1

n (f−1(Xm) ∩Xn), we get that C is
an uncountable Borel set, and that the map g : X → X defined by

g(x) =

{
(h−1
m ◦ f ◦ hn)(x) if x ∈ C,

ȳ otherwise

witnesses An ∩ C ≤Bor(X) Am. By our choice of the An’s, this implies n = m,
whence n ∈ b. Therefore a ⊆ b, as required. �

Remark 6.4. Notice that to get Lemma 6.2 it is enough to assume that X is a well-
orderable set. Therefore, also in Theorem 6.3 we can weaken the assumption AC by
just requiring that X (equivalently, any uncountable Polish space) is well-orderable.

Using essentially the same argument, one can also show that a variant of The-
orem 6.3 applies to arbitrary uncountable Polish spaces X (and not only to the
ultrametric ones).

Theorem 6.5 (AC). Let X be an uncountable Polish space. Then there is a map
ψ : P(ω)→P(X) such that for every a, b ⊆ ω

(1) if a ⊆ b, then ψ(a) ≤D2(X) ψ(b);
(2) if ψ(a) ≤Bor(X) ψ(b), then a ⊆ b.

In particular, (P(ω),⊆) embeds into the F-hierarchy on X for every reducibility
D2(X) ⊆ F ⊆ Bor(X), hence Deg(F) is very bad.

Proof. In the proof of Theorem 6.3, let (Xn)n∈ω be a partition of X into uncount-
able ∆0

2 sets. �

Remark 6.6. In Theorem 6.5 we cannot replace ≤D2(X) with continuous reducibility
≤W(X): in fact, in the Cook continuum X (which is uncountable), we cannot hope
to embed (P(ω),⊆) into Deg(W(X)) because there are no infinite chains of subsets
of X (with respect to continuous reducibility).

We now aim to show that if we further assume V = L, then the map ψ of The-
orems 6.3 and 6.5 can be chosen to range in the collection of Π1

1 (alternatively:
Σ1

1) subsets of the given (ultrametric) Polish space: this in particular implies that
the L(d̄)-hierarchy on Π1

1 (respectively, Σ1
1) subsets of ωω is very bad in L. To

prove this, we will modify the recursion used in the proof of Lemma 6.2 so that
membership in each of the sets can be computed in the next admissible set.

Notation 6.7. For x, y ∈ ωω, let ωx,y1 denote the least (x, y)-admissible ordinal γ.17

To simplify the notation, set also ωx1 = ωx,x1 .

Theorem 6.8 (Spector-Gandy). (see [Hjo10, Theorem 5.5]) A set A ⊆ ωω is Π1
1

in a parameter p ∈ ωω if and only if there is a Σ1-formula ϕ(x) such that

x ∈ A⇔ Lωx,p1
[x, p] � ϕ(x, p)

for all x ∈ ωω.

Lemma 6.9. Let X be a Polish space. Then there are sets U ⊆ ωω × X and
V ⊆ ωω ×X2 such that:

(1) The projections p(U) and p(V ) on the first coordinate are Π1
1 sets.

17That is, ωx,y1 is the least γ > ω such that Lγ [x, y] is a model of Kripke-Platek set theory.
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(2) U is both Π1
1 and Σ1

1 on p(U)×X and V is both Π1
1 and Σ1

1 on p(V )×X2.
(3) A set A ⊆ X is an uncountable Borel set if and only if A = Ux = {y ∈ ωω |

(x, y) ∈ U} for some x ∈ p(U).
(4) A set A ⊆ X2 is the graph of a Borel function from X to itself if and only

if A = Vx = {(y, z) ∈ ωω | (x, y, z) ∈ V } for some x ∈ p(V ).

Sketch of proof. Since X is second-countable, an arbitrary Borel set A ⊆ X can be
easily coded by a countable well-founded tree which describes how the Borel set is
built up from basic open sets using countable unions and complements. This tree
and a tree coding a perfect subset of A are then coded into an element of x ∈ ωω,
and then for such x we set Ux = A.

For what concerns Borel functions, notice that we can concentrate only on ultra-
metric Polish spaces X = (X, d), because the result can then be transferred to an
arbitrary Polish space Y by using a Borel isomorphism between X and Y . There-
fore from now on we fix an ultrametric Polish space X = (X, d). Recall that Bor(X)
coincide with the collection of all Baire class α functions (for arbitrary α < ω1), i.e.
with the closure under pointwise limits of the collection of all Lipschitz functions
(see [MR09b, Corollary 2.16] and [Kec95, Theorems 24.3]). Starting with a function
f defined on a fixed countable dense set D ⊆ X, we form the (pseudo-)limit f̄ of
f by setting f̄(x) = limn→∞ f(xn) (for an arbitrary sequence (xn)n∈ω in D with
limn→∞ xn = x) if

oscf (x) = lim
n→∞

sup{d(f(y), f(z)) | y, z ∈ X ∧ d(x, y), d(x, z) < 2−n} = 0,

and f̄(x) = y0 (for y0 ∈ X a fixed value) otherwise. From a countable family of
functions f as above attached to the terminal nodes of a given well-founded tree,
we can then build up a Borel function g by forming (pseudo-)limits (i.e. taking
the pointwise limit where it exists and some fixed value y0 ∈ X elsewhere) in the
obvious way along the tree. The tree is then coded into an element of x ∈ ωω,
and for all x’s built in this way we let Vx be the graph of the corresponding Borel
function g.

Notice that the sets of codes (for both Borel sets and Borel functions) have to
be Π1

1 to express that the trees used in the coding are well-founded. �

Lemma 6.10. Assume V = L and let X = (X, d) be an uncountable Polish space.
Then there is a Π1

1 set A ⊆ X2 such that Ax∩C �Bor(X) Ay for all distinct x, y ∈ X
and all uncountable Borel sets C ⊆ X.

Proof. Since every uncountable Polish space is Borel isomorphic to (ωω, d̄), we may
assume without loss of generality that X = (X, d) = (ωω, d̄). Note that the sets
U and V obtained in Lemma 6.9 coding the uncountable Borel subsets of X = ωω
and the Borel functions from X = ωω to itself are actually both Π1

1 (without
parameters).

Recall that |X| = ω1 since V = L. Let us construct a sequence (γα, Xα, {Ax,α, Bx,α |
x ∈ Xα})α<ω1, by recursion on α < ω1, where the Ax,α’s and the Bx,α’s are as in
the proof of Lemma 6.2 (setting µ = ω1), γα is a countable admissible ordinal,
and Xα is a countable (or finite) subset of X. We first let γ0 be the least admis-
sible ordinal and X0 = ∅ (so that none of the Ax,0, Bx,0 need to be defined and
{Ax,0, Bx,0 | x ∈ X0} = ∅). In the α-th step of the recursion (for 0 < α < ω1),
let sα = (γβ , Xβ , {Ax,β , Bx,β | x ∈ Xβ})β<α, and set X<α =

⋃
β<αXβ , Az,<α =⋃

{Az,β | β < α∧z ∈ Xβ}, and Bz,<α =
⋃
{Bz,β | β < α∧z ∈ Xβ} for all z ∈ X<α.
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Let γα be the least admissible with sα ∈ Lγα , and let c denote the α-th element in
<L. Check if c is of the form c = (u, v, x, y) ∈ (ωω)2 × X2 and if the Σ1-formula
which states that u and v are codes (i.e. u ∈ p(U) and v ∈ p(V )) via Theorem 6.8
holds in Lγα . If not, Az,α = Az,<α, and Bz,α = Bz,<α for all z ∈ Xα = X<α.

Now suppose instead that c is of the form above, and that u, v code C, f , i.e. that
u ∈ p(U), v ∈ p(V ), C = Uu, and Vv is the graph of f . Let C0 = C\(Ax,<α∪Bx,<α),
so that, in particular, C0 is uncountable.

We now consider three (not necessarily mutually exclusive) cases:
(1) Let a0 be the <L-least a ∈ C0 \Lγα with f(a) ∈ Ay,<α, and a1 be the <L-least

a ∈ C0 \ Lγα such that a0 <L a ∧ f(a) ∈ Ay,<α, if they exist. There are such
a0 and a1 if f(z) ∈ Ay,<α for uncountably many z ∈ C0.

(2) Let a2 be the <L-least a ∈ C0 \ Lγα with f(a) ∈ By,<α, if it exist. There is
such an a2 if f(z) ∈ By,<α for uncountably many z ∈ C0.

(3) Let a3 be the <L-least a ∈ C0 \ Lγα with f(a) /∈ Ay,α ∪ By,<α, if it exists.
There is such an a3 if f(z) /∈ Ay,α ∪By,<α for uncountably many z ∈ C0.

Notice that at least one of a1, a2, a3 is defined since C0 is uncountable, so let a
denote the <L-least element of {a1, a2, a3}. Let us mention that to define a, it is
not necessary to know which of a1, a2, a3 are defined, but it is sufficient to search for
the <L-least a satisfying one of the conditions. We then set Xα = X<α∪{x, y} and
Ax,α = Ax,<α ∪ {a}. If a = a1, we further set Bx,α = Bx,<α ∪ {a0}, while if a = a3

we further set By,α = By,<α ∪ {f(a)}. Finally, for z ∈ Xα we set Az,α = Az,<α
and Bz,α = Bz,<α in every case in which these sets have not already been explicitly
defined before. This concludes the construction of the desired sequence.

Let now Ax =
⋃
α<ω1

Ax,α and A = {(x, y) | y ∈ Ax}. Arguing as in the proof
of Lemma 6.2, it is easy to check that the α-th step of the construction guarantees
that f does not reduce Ax ∩ C to Ay.

To see that A is a Π1
1 set, consider some a ∈ Ax and find the least α < ω1 with a ∈

Ax,α. Recall that we are assuming that the elements of X are sequences of natural
numbers, so it makes sense to consider the countable ordinal ωa1 . Notice that γα <
ωa1 because a /∈ Lγα . Recall that we picked γα so that sα = (γβ , Xβ , {Ax,β , Bx,β |
x ∈ Xβ})β<α ∈ Lγα . It is then easy to check that the statement “sα is the sequence
constructed using the recursive definition above for β < α” is Σ1 over Lγα . Suppose
now that c = (u, v, x, y) is the α-th element in <L. Note that α < γα since sα ∈ Lγα ,
and hence c ∈ Lγα . The statement that u ∈ p(U) and v ∈ p(V ) is Σ1 over Lγα
as well, while the choice of a is ∆1 over Lωa1 . Hence membership of a into Ax is
equivalent to the Σ1-over-Lωa1 statement that there is a sequence sα constructed
according to the recursion and an ordinal γα such that a is chosen at the α-th step
of the construction. Therefore A is a Π1

1 set by Theorem 6.8. �

Arguing as in Theorem 6.3 and Corollary 6.5, we now obtain:

Theorem 6.11. Assume V = L and let X = (X, d) be an uncountable ultrametric
Polish space. Then there is a map ψ from P(ω) into the Π1

1 subsets of X such
that for all a, b ⊆ ω

(1) if a ⊆ b, then ψ(a) ≤L(d) ψ(b);
(2) if ψ(a) ≤Bor(X) ψ(b), then a ⊆ b.

In particular, (P(ω),⊆) embeds into the F-hierarchy on the Π1
1 subsets of X for

every reducibility L(d) ⊆ F ⊆ Bor(X), hence DegΠ1
1
(F) is very bad.
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Theorem 6.12. Assume V = L and let X be an uncountable Polish space. Then
there is a map ψ from P(ω) into the Π1

1 subsets of X such that for every a, b ⊆ ω
(1) if a ⊆ b, then ψ(a) ≤D2(X) ψ(b);
(2) if ψ(a) ≤Bor(X) ψ(b), then a ⊆ b.

In particular, (P(ω),⊆) embeds into the F-hierarchy on the Π1
1 subsets of X for

every reducibility D2(X) ⊆ F ⊆ Bor(X), hence DegΠ1
1
(F) is very bad.

The existence of maps ψ̃ : P(ω) → Σ1
1(X) with the properties stated in The-

orems 6.11 and 6.12 follows immediately by taking complements, i.e. by setting
ψ̃(a) = X \ ψ(a) for every a ⊆ ω (where ψ : P(ω)→ Π1

1(X) is as in Theorem 6.11
or Theorem 6.12).

Remark 6.13. By Borel determinacy, the requirement that ψ ranges into Π1
1 (alter-

natively: Σ1
1) subsets of X in Theorems 6.11 and 6.12 cannot be further improved,

and therefore such results are optimal.

It is well-known that Π1
1-determinacy implies that e.g. the L(d̄)-hierarchy on Π1

1

subsets of ωω is very good. In fact, Harrington [Har78] (essentially) showed that
the following are equivalent:

• every Π1
1 subset of ωω is determined;

• for all a ∈ ωω, a# exists;
• SLOL(d̄) holds for Π1

1 subsets of ωω.
Since sharps do not exist if V = L, Theorem 6.11 can then be regarded as a strength-
ening of (one direction) of the above mentioned Harrington’s result: under the
further assumption V = L, not only SLOL(d̄) for Π1

1 subsets of ωω does not hold,
but in fact we can embed a reasonably complicated partial order in DegΠ1

1
(L(d̄)).

Notice also that since Deg∆1
1
(L(d̄)) needs to be very good by Borel determinacy,

Theorem 6.11 actually shows that if V = L, then (P(ω),⊆) embeds into the L(d̄)-
hierarchy on proper Π1

1 subsets of ωω, and Theorem 6.12 shows that the same
partial order embeds also e.g. in the Bor(X)-hierarchy on proper Π1

1 (alternatively:
proper Σ1

1) subsets of any uncountable Polish space X. This conclusion consid-
erably strengthen the well-known fact that if Π1

1-determinacy fails then there are
proper Π1

1 subsets which are not (Borel-)complete for that class.
The next questions essentially asks if it is possible to further strengthen Theo-

rems 6.3 and 6.11 by either trying to embed a more complicated quasi-order into
the relevant hierarchies, or by weakening the assumption required for those results
to Π1

1-determinacy.

Question 6.14. Assume AC.
(1) Is there a map ψ : P(ω) → P(ωω) such that a ⊆∗ b ⇐⇒ ψ(a) ≤Bor(ωω)

ψ(b) for all a, b ⊆ ω?
(2) Does the non-existence of 0# already imply that the Bor(ωω)-hierarchy on

Π1
1 subsets of ωω is ill-founded?
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